www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Kommutatoruntergruppe
Kommutatoruntergruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kommutatoruntergruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 So 15.11.2009
Autor: hannahmaontana

Aufgabe
Bestimmen Sie die Kommutatoruntergruppe von [mm] GL(2,\IR) [/mm]

Ich habe ein paar Probleme bei dieser Aufgabe.

Für jede Matrix M der Kommutatoruntergruppe muss gelten:
[mm] M=ABA^{-1}B^{-1} [/mm] wobei A und B aus [mm] GL(2,\IR) [/mm] sind.

Wie muss ich jetzt weitermachen?

Mein erster Gedanke war, dass [mm] MB=ABA^{-1}, [/mm] also M ähnlich zu Matrizen aus GL sein muss, aber das ist ja sowieso schon klar.

Ich meine irgendwo gehört zu haben, dass [mm] SL(2,\IR) [/mm] die gesuchte Gruppe ist, weiß aber nicht wieso.

        
Bezug
Kommutatoruntergruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 So 15.11.2009
Autor: felixf

Hallo!

> Bestimmen Sie die Kommutatoruntergruppe von [mm]GL(2,\IR)[/mm]
>  Ich habe ein paar Probleme bei dieser Aufgabe.
>  
> Für jede Matrix M der Kommutatoruntergruppe muss gelten:
> [mm]M=ABA^{-1}B^{-1}[/mm] wobei A und B aus [mm]GL(2,\IR)[/mm] sind.
>  
> Wie muss ich jetzt weitermachen?

Rechne mal [mm] $\det [/mm] M$ aus. Dann siehst du, dass $M [mm] \in [/mm] SL(2, [mm] \IR)$ [/mm] ist.

> Ich meine irgendwo gehört zu haben, dass [mm]SL(2,\IR)[/mm] die
> gesuchte Gruppe ist, weiß aber nicht wieso.

Versuch doch mal zu zeigen, dass jedes Element aus $SL(2, [mm] \IR)$ [/mm] als Kommutator geschrieben werden kann. Oder zuminest ein Erzeugendensystem von $SL(2, [mm] \IR)$. [/mm] Vielleicht geht das ja?

LG Felix


Bezug
                
Bezug
Kommutatoruntergruppe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:13 So 15.11.2009
Autor: hannahmaontana


> Rechne mal [mm]\det M[/mm] aus. Dann siehst du, dass [mm]M \in SL(2, \IR)[/mm]
> ist.
>  

Das hab ich gemacht, und es kommt 1 raus, weil die Determinante vom Inversen das Inverse der Determinante ist.

> Versuch doch mal zu zeigen, dass jedes Element aus [mm]SL(2, \IR)[/mm]
> als Kommutator geschrieben werden kann. Oder zuminest ein
> Erzeugendensystem von [mm]SL(2, \IR)[/mm]. Vielleicht geht das ja?

Muss ich das jetzt noch zeigen? Es scheint mir doch sehr kompliziert. Eine Basis ist z.B [mm] \pmat{ 1 & b \\ 0 & 1 }, \pmat{ 1 & 0 \\ b & 1 } [/mm]
aber doch nur für "+" und brauche ich nicht eins für "mal"?

Bezug
                        
Bezug
Kommutatoruntergruppe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 16.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de