www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Kompakte, surjektive Abbildung
Kompakte, surjektive Abbildung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompakte, surjektive Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:28 Mo 28.01.2013
Autor: Feuerkerk

Aufgabe
Seien X und Y Banachräume, T:X->Y kompakt und surjektiv. Dann ist [mm] dim(Y)<\infty [/mm]

Diese Aufgabe wurde in einer Übung behandelt und als Lösung wurde uns folgendes gegeben (B sei die offene Einheitskugel in X):

Nach dem Open Mapping Theorem ist T(B) offen. Da T kompakt, ist [mm] \overline{T(B)} [/mm] kompakt in Y. Daraus folgt: Die abgeschlossene Einheitskugel in Y ist kompakt, also ist Y endlichdimensional.

Ich verstehe die vorletzte Schlussfolgerung nicht. Woraus genau folgt die Kompaktheit der abgeschlossenen Einheitskugel in Y? Könnte mir das jemand bitte erklären? :-)

        
Bezug
Kompakte, surjektive Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:42 Mo 28.01.2013
Autor: fred97


> Seien X und Y Banachräume, T:X->Y kompakt und surjektiv.
> Dann ist [mm]dim(Y)<\infty[/mm]
>  Diese Aufgabe wurde in einer Übung behandelt und als
> Lösung wurde uns folgendes gegeben (B sei die offene
> Einheitskugel in X):
>  
> Nach dem Open Mapping Theorem ist T(B) offen. Da T kompakt,
> ist [mm]\overline{T(B)}[/mm] kompakt in Y. Daraus folgt: Die
> abgeschlossene Einheitskugel in Y ist kompakt, also ist Y
> endlichdimensional.
>  
> Ich verstehe die vorletzte Schlussfolgerung nicht. Woraus
> genau folgt die Kompaktheit der abgeschlossenen
> Einheitskugel in Y? Könnte mir das jemand bitte erklären?


Ich denke, dass Du ein ganz entscheidendes Hilfsmittel brauchst, und das ist folgender Satz (hattet Ihr den ?):

SATZ: Sind X und Y Banachräume , ist A:X [mm] \to [/mm] Y linear und stetig und ist der Bildraum A(X) abgeschlossen, so ex. ein c>0 mit:

   zu jedem y [mm] \in [/mm] A(X) ex. ein x [mm] \in [/mm] X mit Ax=y und [mm] ||x||_X \le c||y||_Y. [/mm]


Wenn Du diesen Satz hast, so kannst Du folgendes zeigen:

SATZ: Seien X und Y Banachräume und K:X [mm] \to [/mm] Y kompakt. Dann gilt:

    K(X) ist abgeschlossen [mm] \gdw [/mm] dim K(X) < [mm] \infty. [/mm]


Daraus bekommst du dann die

FOLGERUNG: Seien X und Y Banachräume und K:X [mm] \to [/mm] Y kompakt. Ist K surjekziv, so ist dim K(X) < [mm] \infty. [/mm]




FRED

> :-)


Bezug
                
Bezug
Kompakte, surjektive Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Mo 28.01.2013
Autor: Feuerkerk

Hallo,

den Satz hatten wir so nicht, daher wäre es vielleicht besser, hippias' Ansatz zu benutzen, nur leider verstehe ich bei diesem noch nicht, wieso das die Behauptung zeigt.

Bezug
                        
Bezug
Kompakte, surjektive Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Mo 28.01.2013
Autor: Helbig


> den Satz hatten wir so nicht, daher wäre es vielleicht
> besser, hippias' Ansatz zu benutzen, nur leider verstehe
> ich bei diesem noch nicht, wieso das die Behauptung zeigt.

Hallo Feuerkerk,

Nach dem Tip von hippias gibt es eine offene Kugel [mm] $B_r(0)\subseteq [/mm] T(B)$ mit dem Radius $r>0$ und dem Nullvektor von $Y$ als Mittelpunkt. Da [mm] $\overline [/mm] {T(B)}$ kompakt ist, ist [mm] $\overline {B_r(0)}$ [/mm] als abgeschlossene Teilmenge einer kompakten Menge ebenfalls kompakt. Schließlich ist die abgeschlossene Einheitskugel als Bild der kompakten Menge [mm] $\overline {B_r(0)}$ [/mm] unter der stetigen Abbildung [mm] $v\mapsto \frac [/mm] 1 r  v$ kompakt.

Gruß,
Wolfgang

Bezug
                                
Bezug
Kompakte, surjektive Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:00 Mo 28.01.2013
Autor: Feuerkerk

Jetzt versteh ich's. Vielen Dank euch dreien, besonders dir, Helbig.

Bezug
        
Bezug
Kompakte, surjektive Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:24 Mo 28.01.2013
Autor: hippias

Geht es nicht auch so? Da $T(B)$ offen ist, enthaelt diese Menge eine offene Kugel, deren Abschluss als abgeschlossene Teilmenge der kompakten Menge [mm] $\overline{T(B)}$ [/mm] ebenfalls kompakt ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de