www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Kompaktheit
Kompaktheit < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompaktheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:32 Mi 28.04.2010
Autor: mathestuden

Aufgabe
D2

Man zeige:

(1) Die Menge [mm]\IR^>0[/mm] ist keine Kompakte Menge von [mm](\IR, U_\IR[/mm]
(2) In einem metrischen Raum (M,d) mit einer kompakten Menge [mm]K \subset M[/mm] gibt es zu jedem r>0 endlich viele Bälle vom Radius r, K überdecken.

Hallo Mathefreunde,

die (1) meine ich bereits gelöst zu haben. Damit [mm]\IR^>0[/mm] kompakt wäre, müsste diese Menge beliebig viele Teilüberdeckungen zu [mm]U_\IR[/mm] besitzen. Hier habe ich die Funktion [mm]f(x)=\bruch{1}{x} [/mm]. Es muss also gelten, dass [mm]\left\{f(x), x\in\IR\right\}\cup\left\{0\right\}[/mm].[mm]\limes_{x \to \infty}\bruch{1}{x}=0[/mm]. Da die 0 aber nicht im [mm]\IR^>0[/mm] entahlten ist, ist diese Menge auch nicht kompakt.

Zu (2) habe ich einen Ansatz. Ich weiß allerdings nicht wie ich diese Aufgabe beweisen soll. Ich habe erstmal eine Metrik mit K und dann mit M auf die entsprechenden Radien abgebildet : i) bzgl. K: [mm]\tilde d: K \times K \to \tilde r[/mm], bzgl M: [mm]d: M \times M \to r[/mm]. Dabei muss gelten [mm]r\ge\tilde r>0[/mm].

Vielen Dank schon mal im Voraus

Christoph

        
Bezug
Kompaktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:52 Mi 28.04.2010
Autor: fred97


> D2
>  
> Man zeige:
>  
> (1) Die Menge [mm]\IR^>0[/mm] ist keine Kompakte Menge von [mm](\IR, U_\IR[/mm]
>  
> (2) In einem metrischen Raum (M,d) mit einer kompakten
> Menge [mm]K \subset M[/mm] gibt es zu jedem r>0 endlich viele Bälle
> vom Radius r, K überdecken.
>  Hallo Mathefreunde,
>  
> die (1) meine ich bereits gelöst zu haben.

Da bin ich anderer Meinung !



> Damit [mm]\IR^>0[/mm]
> kompakt wäre, müsste diese Menge beliebig viele
> Teilüberdeckungen zu [mm]U_\IR[/mm] besitzen.


Was soll denn das  , bitteschön, bedeuten ?

> Hier habe ich die
> Funktion [mm]f(x)=\bruch{1}{x} [/mm]. Es muss also gelten, dass
> [mm]\left\{f(x), x\in\IR\right\}\cup\left\{0\right\}[/mm].[mm]\limes_{x \to \infty}\bruch{1}{x}=0[/mm].


Puh, das ist nicht nachzuvollziehen. Du multiplizierst eine Menge mit einem Grenzwert ?


> Da die 0 aber nicht im [mm]\IR^>0[/mm] entahlten ist, ist diese
> Menge auch nicht kompakt.

Jetzt kommen wir der Sache schon etwas näher. Für eine Teilmenge M von [mm] \IR [/mm] gilt doch:

       (*)   M ist kompakt [mm] \gdw [/mm] M ist beschränkt und abgeschlossen

Ist Dir klar, dass [mm]\IR^>0[/mm] weder beschränkt noch abgeschlossen ist ?


Falls Ihr (*) noch nicht hattet (oder nicht benutzen dürft) kannst Du es auch so machen:

          für n [mm] \in \IN [/mm] def. das Intervall [mm] I_n [/mm] durch:  [mm] $I_n= [/mm] (n-1,n+1)$

Dann ist [mm] (I_n)_{n \in \IN} [/mm] eine offene Überdeckung von  [mm]\IR^>0[/mm] .

Nun überlege Dir, ob endlich viele der [mm] I_n [/mm]  's die Menge  [mm]\IR^>0[/mm] überdecken ?

>  
> Zu (2) habe ich einen Ansatz. Ich weiß allerdings nicht
> wie ich diese Aufgabe beweisen soll. Ich habe erstmal eine
> Metrik mit K und dann mit M auf die entsprechenden Radien
> abgebildet

Was hast Du gemacht ?? Verstehst Du eigentlich selbst, was Du da schreibst ?



>  : i) bzgl. K: [mm]\tilde d: K \times K \to \tilde r[/mm],
> bzgl M: [mm]d: M \times M \to r[/mm]. Dabei muss gelten [mm]r\ge\tilde r>0[/mm].

.................     Donnerwetter ! ...  aber .. was bedeutet das nur ?


Sei r>0. Für x [mm] \in [/mm] K sei [mm] $B_x:= \{y \in M: d(y,x)
Dann ist [mm] (B_x)_{x \in K} [/mm]  eine offene Überdeckung von K.

Macht es klick ?

FRED


>  
> Vielen Dank schon mal im Voraus
>  
> Christoph


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de