www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Kompaktheit zeigen
Kompaktheit zeigen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompaktheit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Di 08.05.2007
Autor: Fuffi

Aufgabe
Sei [mm] (x_{n}) [/mm] eine konvergente Folge im metrischen Raum X mit [mm] \limes_{n\rightarrow\infty} x_{n} [/mm] = x [mm] \in [/mm] X. Man zeige, dass die Menge [mm] \{ x_{1}, x_{2}, ... \} \cup \{ x \} [/mm]  kompakt ist.

Also unser aktueller Zettel lief ganz gut aber bei der Aufgabe sind wir uns sehr unsicher wie wir das zeigen sollen, wir brauchen jedoch die Punkte da wir schon den nächsten Zettel aus zeitlichen Gründen nicht abgeben können.

Es wäre nett wenn mir jemand mal einen kleinen Tip geben könnte, wie ich die Aufgabe am besten Anfangen kann.

MfG

Fuffi

        
Bezug
Kompaktheit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Di 08.05.2007
Autor: felixf

Hallo Fuffi!

> Sei [mm](x_{n})[/mm] eine konvergente Folge im metrischen Raum X mit
> [mm]\limes_{n\rightarrow\infty} x_{n}[/mm] = x [mm]\in[/mm] X. Man zeige,
> dass die Menge [mm]\{ x_{1}, x_{2}, ... \} \cup \{ x \}[/mm]  
> kompakt ist.
>  Also unser aktueller Zettel lief ganz gut aber bei der
> Aufgabe sind wir uns sehr unsicher wie wir das zeigen
> sollen, wir brauchen jedoch die Punkte da wir schon den
> nächsten Zettel aus zeitlichen Gründen nicht abgeben
> können.
>  
> Es wäre nett wenn mir jemand mal einen kleinen Tip geben
> könnte, wie ich die Aufgabe am besten Anfangen kann.

Benutzt hier die Definition von kompakt: Nehmt euch also eine Familie [mm] $U_i$, [/mm] $i [mm] \in [/mm] I$ von offenen Mengen mit [mm] $\{ x_1, x_2, \dots \} \cup \{ x \} \subseteq \bigcup_{i\in I} U_i$. [/mm] Ihr muesst dann zeigen, dass es eine endliche Menge $J [mm] \subseteq [/mm] I$ gibt mit [mm] $\{ x_1, x_2, \dots \} \cup \{ x \} \subseteq \bigcup_{i\in J} U_i$. [/mm]

Dazu nehmt euch doch erstmal ein $i [mm] \in [/mm] I$ mit $x [mm] \in U_i$. [/mm] Koennt ihr etwas ueber die Anzahl der Folgenglieder sagen, die nicht in [mm] $U_i$ [/mm] liegen?

LG Felix


Bezug
                
Bezug
Kompaktheit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Di 08.05.2007
Autor: Fuffi

Hallo Felix,
ich hatte vergessen zu sagen, dass wir kompakt bis jetzt nur als folgenkompakt definiert haben:
Ein metrischer Raum X heißt folgenkompakt, wenn jede Folge in X eine in X konvergente Teilfolge besitzt.

Dein Antwort bezieht sich glaube ich auf "allgemeine" Kompaktheit, die wir so noch nicht hatten und ich sie denke ich auch nicht anwenden darf.

MfG

Fuffi

Bezug
                        
Bezug
Kompaktheit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Di 08.05.2007
Autor: felixf

Hallo Fuffi

> Hallo Felix,
>  ich hatte vergessen zu sagen, dass wir kompakt bis jetzt
> nur als folgenkompakt definiert haben:
>  Ein metrischer Raum X heißt folgenkompakt, wenn jede Folge
> in X eine in X konvergente Teilfolge besitzt.
>  
> Dein Antwort bezieht sich glaube ich auf "allgemeine"
> Kompaktheit, die wir so noch nicht hatten und ich sie denke
> ich auch nicht anwenden darf.

Dann musst du anders vorgehen:

Sei [mm] $(y_n)_{n\in\N}$ [/mm] irgendeine Folge mit [mm] $y_n \in \{ x_1, x_2, \dots \} \cup \{ x \}$. [/mm] Wenn die Menge [mm] $\{ y_n \mid n \in \N \}$ [/mm] endlich ist, dann gibt es mindestens ein Element in der Folge, welches unendlich oft angenommen wird. Dies liefert dir dann eine konstante Teilfolge, die natuerlich konvergent ist.

Andernfalls kannst du dir induktiv eine streng monoton steigende Funktion $a : [mm] \IN \to \IN$ [/mm] konstruieren so, dass es zu jedem $n [mm] \in \IN$ [/mm] ein [mm] $b_n \in \IN$ [/mm] gibt mit [mm] $y_{a(n)} [/mm] = [mm] x_{b_n}$ [/mm] und [mm] $b_n \ge [/mm] n$. Damit konvergiert [mm] $(y_{a(n)})_{n\in\IN}$ [/mm] dann gegen $x$.

LG Felix


Bezug
                                
Bezug
Kompaktheit zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 Di 08.05.2007
Autor: Fuffi

So in die Richtung ging auch meine Vermutung. Danke für deine schnelle Hilfe!

Fuffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de