Komplexe Differenzierbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
|
Ich habe diese Frage in keinem weiteren Forum gestellt.
Hallo erstmal.
Ich habe erst kürzlich mein Abi hinter mir und habe vor, ab dem jetzigen Wintersemester Mathematik zu studieren. Zu diesem Zweck bin ich bereits dabei, mich etwas vorzubereiten.
Dabei bin ich auf ein Problem gestoßen:
Eine Funktion f(z) heißt komplex differenzierbar, wenn der als Ableitung bezeichnete Grenzwert [mm]\limes_{|\Delta z| \to 0}\bruch{f(z+\Delta z)-f(z)} {\Delta z}[/mm] existiert und unabhängig von der Folge [mm]\Delta z[/mm] ist.
Soweit alles recht logisch, aber wie erkenne ich das im Ernstfall? Ich kann doch nicht bei jeder noch so komplizierten Funktion den Differenzenquotienten bilden... In dem Skript, was ich mir runtergeladen hab, steht dazu auch weiter nichts...Hilfe! Muß ich mir jetzt Sorgen machen, daß ich zu blöd fürs Mathestudium bin oder hab ich einfach nur n Brett vorm Kopf? Ansonsten hatte ich bis jetzt ja eigentlich keine Probleme...
Vielen Dank für eure Hilfe bereits im Voraus,
ein etwas verunsicherter, da ihm die Frage offengestanden etwas peinlich ist und die Lösung wahrscheinlich auf der Hand liegt,
Christian
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:32 Sa 31.07.2004 | Autor: | Marc |
Hallo Christian,
erstmal nachträglich !
> Ich habe erst kürzlich mein Abi hinter mir und habe vor,
> ab dem jetzigen Wintersemester Mathematik zu studieren. Zu
> diesem Zweck bin ich bereits dabei, mich etwas
> vorzubereiten.
Sehr vorbildlich
> Dabei bin ich auf ein Problem gestoßen:
> Eine Funktion f(z) heißt komplex differenzierbar, wenn der
> als Ableitung bezeichnete Grenzwert [mm]\limes_{|\Delta z| \to 0}\bruch{f(z+\Delta z)-f(z)} {\Delta z}[/mm]
> existiert und unabhängig von der Folge [mm]\Delta z[/mm] ist.
> Soweit alles recht logisch, aber wie erkenne ich das im
> Ernstfall? Ich kann doch nicht bei jeder noch so
> komplizierten Funktion den Differenzenquotienten bilden...
Die komplexe Differenzierbarkeit ist doch in direkter Analogie zur reellen Differenzierbarkeit definiert, und diese müßte dir doch aus deinem Mathe-LK noch bekannt sein.
Sie ist in diesem Sinne nicht schwieriger zu handhaben als der reelle Differenzialquotient, abgesehen davon, dass man eben über dem komplexen Zahlkörper rechnet.
Wie du ebenfalls aus der Schule hoffentlich noch weißt, kann man mit der elementaren Definition der Ableitung (mittels Differentialquotient) "höhere" Ableitungsregeln gewinnen:
Summenregel, Faktorregel, Potenzregel, Produktregel, Quotientenregel, Kettenregel etc.
Auf diese Weise kommt man bei sehr vielen Funktionen bereits um die Anwendung der elementaren Definition herum, um komplexe Diffbarbeit zu zeigen.
Es bleibt also nur noch, deine obige Definition für elementare Funktionen nachzuweisen (z.B. für f(x)=const oder f(x)=x).
> In dem Skript, was ich mir runtergeladen hab, steht dazu
> auch weiter nichts...Hilfe! Muß ich mir jetzt Sorgen
> machen, daß ich zu blöd fürs Mathestudium bin oder hab ich
> einfach nur n Brett vorm Kopf? Ansonsten hatte ich bis
> jetzt ja eigentlich keine Probleme...
>
> Vielen Dank für eure Hilfe bereits im Voraus,
> ein etwas verunsicherter, da ihm die Frage offengestanden
> etwas peinlich ist und die Lösung wahrscheinlich auf der
> Hand liegt,
Nein, ich kann dich beruhigen: Allein daran, dass du dich bereits vor Beginn des Studiums mit Mathematik beschäftigst, zeigt, dass du für's Studium geeignet bist.
Und dass du bei Verständnisproblemen nachfragst und nicht aufgibst, unterstreicht meine Einschätzung noch weiter
Viele Grüße,
Marc
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:08 Sa 31.07.2004 | Autor: | Christian |
Vielen, vielen Dank für deine Hilfe!
Wie sich rausgestellt hat, hatte ich tatsächlich nur ein (wenn auch ein ziemlich großes) Brett vorm Kopf.
Eigentlich waren die Gedanken, die ich mir dazu gemacht hab, im Nachhinein betrachtet, ziemlich dämlich.
Aber manchmal braucht man eben einen, der einen darauf afmerksam macht, daß man ein Brett vorm Kopf hat, und meistens stellt sich heraus, daß es (zum Glück) nichtmal richtig befestigt ist.
Danke dafür.
Gruß,
Christian
|
|
|
|