www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Ebene
Komplexe Ebene < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Mi 23.11.2011
Autor: unibasel

Aufgabe
Sei [mm] n\ge1 [/mm] eine natürliche Zahl. Die Punkte [mm] w_{k}=e^{i\bruch{\pi*k}{n}} [/mm] für k=0,1...,n-1 liegen auf dem Einheitskreis der komplexen Ebene und bilden die Ecken eines n-Ecks.
a) Zeigen Sie, dass die Länge jeder Seite des n-Ecks [mm] 2sin\bruch{\pi}{n} [/mm] beträgt. (insbesondere ist das n-Eck gleichseitig).
b) Sei [mm] U_{n} [/mm] der Umfang des n-Ecks. Zeigen Sie, dass [mm] \limes_{n\rightarrow\infty}U_{n}=2\pi. [/mm]


Guten Abend:)

Leider komme ich mit dieser Aufgabe nicht klar. Ich muss sie zwar nicht lösen, aber es interessiert mich, wie man dies zeigen kann.

Ich stelle mir jetzt darunter ein n-Eck so vor:

für n=8 z.b

Mittelpunkt = (0|0)

Auf x-Achse fange ich an mit [mm] w_{0} [/mm] als ersten Punkt und fahre weiter nach oben mit [mm] w_{1}, w_{2} [/mm] befindet sich dann auf der y-Achse usw. --> dies bildet dann ein 8-Eck.

Dabei ist
[mm] w_{0}=1 [/mm]
[mm] w_{2}=i [/mm]
[mm] w_{4}=-1 [/mm]
[mm] w_{6}=-i [/mm]

Ich hoffe, ihr könnt euch das 8-Eck vorstellen.

Nun die Seitenlänge wäre dabei: [mm] |w_{k}-w_{k-1}| [/mm]

Danach muss man noch das hier gebrauchen: |zw|=|z||w| als Regel.

Aber ich habe keine Ahnung, wie ich das zeigen soll. Kan mir jemand helfen?

Vielen Dank.
lg



        
Bezug
Komplexe Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Mi 23.11.2011
Autor: leduart

Hallo
1. bitte seh dir deine posts mit vorschau an, ich habs verbessert, aber deine formeln waren nicht lesbar.
1. dass das n Eck gleichseitig ist, liegt daran, dass alle Winkel gleich sind, was einfach zu zeigen ist, da alle w den Betrag 1 haben, und und man von [mm] w_i [/mm] nach [mm] w_{i+1} [/mm] durch multiplikation mit [mm] e^{i*\pi/n} [/mm] kommt.
2. hast du recht, dass du [mm] |w_{i+1}-w_i| [/mm] ausrechnen musst. entwser durch umschreiben mit [mm] e^{ix}=cosx+isinx [/mm] und dann [mm] \sqrt{Re^2+Im^2} [/mm] oder mit [mm] z*\overline{z} [/mm]
warum machst du das nicht?
konj komplex= an der x achse gespiegelt, aus dem Winkel wird der negative Winkel.
Gruss leduart

Bezug
                
Bezug
Komplexe Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:23 Mi 23.11.2011
Autor: unibasel

ok dankeschön :) konnte es jetzt ganz lösen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de