www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Komplexe Exponentialfunktion
Komplexe Exponentialfunktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Exponentialfunktion: Cos und Sin berechnen
Status: (Frage) beantwortet Status 
Datum: 09:46 Do 06.01.2011
Autor: BarneyS

Aufgabe
Berechnen Sie [mm] $cos(\bruch{\pi}{4})$ [/mm] und [mm] $sin(\bruch{\pi}{4})$ [/mm] aus der komplexen Exponentialfunktion.

Hallo,
ich bin mir nicht sicher, wie ich das angehen soll.
Ich denke nicht, dass man hier mit den Potenzreihen rechnen soll, denn dafür spielt ja die komplexe Exponetialfunktion keine Rolle.
Also nehme ich an, dass man folgende Formel herleiten soll:

[mm] cos(\varphi) = \bruch{e^{i\varphi}+e^{-i\varphi}}{2} [/mm]

Hier kann man jetzt [mm] $\bruch{\pi}{4}$ [/mm] einsetzen, ok. Aber trotzdem ist mir jetzt nicht klar, wie man weiter rechnen soll?

Denn wenn man das in die Formel einsetzt, kommt raus:

[mm] cos(\bruch{\pi}{4}) = cos(\bruch{\pi}{4}) [/mm] ... Toll ;-)

Ma soll ja sicher irgendwie auf [mm] $\bruch{\wurzel{2}}{2}$ [/mm] kommen?

        
Bezug
Komplexe Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:01 Do 06.01.2011
Autor: Lippel

Hallo,

> [mm]cos(\varphi) = \bruch{e^{i\varphi}+e^{-i\varphi}}{2}[/mm]
>  
> Hier kann man jetzt [mm]\bruch{\pi}{4}[/mm] einsetzen, ok. Aber
> trotzdem ist mir jetzt nicht klar, wie man weiter rechnen
> soll?

Was ist denn [mm] $e^{i\frac{\pi}{4}}$ [/mm] und [mm] $e^{-i\frac{\pi}{4}}$? [/mm]
Beides sind ja komplexe Zahlen auf dem Einheitskreis, da [mm] $\left|e^{i\frac{\pi}{4}}\right| [/mm] = [mm] \left|e^{-i\frac{\pi}{4}}\right| [/mm] = 1$.
Schreibe die beiden Zahlen in der Standardform $a+bi$ und setzte in die Formel für [mm] $cos\left(\frac{\pi}{4}\right)$ [/mm] ein.

Viele Grüße, Lippel

Bezug
                
Bezug
Komplexe Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:39 Do 06.01.2011
Autor: BarneyS


> Hallo,
>  
> > [mm]cos(\varphi) = \bruch{e^{i\varphi}+e^{-i\varphi}}{2}[/mm]
>  >  
> > Hier kann man jetzt [mm]\bruch{\pi}{4}[/mm] einsetzen, ok. Aber
> > trotzdem ist mir jetzt nicht klar, wie man weiter rechnen
> > soll?
>  
> Was ist denn [mm]e^{i\frac{\pi}{4}}[/mm] und [mm]e^{-i\frac{\pi}{4}}[/mm]?
>  Beides sind ja komplexe Zahlen auf dem Einheitskreis, da
> [mm]\left|e^{i\frac{\pi}{4}}\right| = \left|e^{-i\frac{\pi}{4}}\right| = 1[/mm].
>  
> Schreibe die beiden Zahlen in der Standardform [mm]a+bi[/mm] und
> setzte in die Formel für [mm]cos\left(\frac{\pi}{4}\right)[/mm]
> ein.
>  
> Viele Grüße, Lippel

Danke für die Antwort.

Dies läßt sich dann aber nur mit dem Satz des Pythagoras berechnen.
Und für Werte [mm] $\not= \bruch{\pi}{4}$ [/mm] oder Vielfache bräuchte man die Trigonometrischen Funktionen... Macht für mich nicht so viel Sin...

Naja, aber dann wäre die Lösung wie folgt:

[mm] cos(\bruch{\pi}{4}) = \bruch{( \wurzel{\bruch{1}{2}}+\wurzel{\bruch{1}{2}}i )+(\wurzel{\bruch{1}{2}}-\wurzel{\bruch{1}{2}}i)}{2} = \bruch{\wurzel{2}}{2}[/mm]

Bezug
                        
Bezug
Komplexe Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:43 Do 06.01.2011
Autor: fred97


> > Hallo,
>  >  
> > > [mm]cos(\varphi) = \bruch{e^{i\varphi}+e^{-i\varphi}}{2}[/mm]
>  >

>  >  
> > > Hier kann man jetzt [mm]\bruch{\pi}{4}[/mm] einsetzen, ok. Aber
> > > trotzdem ist mir jetzt nicht klar, wie man weiter rechnen
> > > soll?
>  >  
> > Was ist denn [mm]e^{i\frac{\pi}{4}}[/mm] und [mm]e^{-i\frac{\pi}{4}}[/mm]?
>  >  Beides sind ja komplexe Zahlen auf dem Einheitskreis,
> da
> > [mm]\left|e^{i\frac{\pi}{4}}\right| = \left|e^{-i\frac{\pi}{4}}\right| = 1[/mm].
>  
> >  

> > Schreibe die beiden Zahlen in der Standardform [mm]a+bi[/mm] und
> > setzte in die Formel für [mm]cos\left(\frac{\pi}{4}\right)[/mm]
> > ein.
>  >  
> > Viele Grüße, Lippel
>
> Danke für die Antwort.
>  
> Dies läßt sich dann aber nur mit dem Satz des Pythagoras
> berechnen.
>  Und für Werte [mm]\not= \bruch{\pi}{4}[/mm] oder Vielfache
> bräuchte man die Trigonometrischen Funktionen... Macht
> für mich nicht so viel Sin...
>  
> Naja, aber dann wäre die Lösung wie folgt:
>  
> [mm]cos(\bruch{\pi}{4}) = \bruch{( \wurzel{\bruch{1}{2}}+\wurzel{\bruch{1}{2}}i )+(\wurzel{\bruch{1}{2}}-\wurzel{\bruch{1}{2}}i)}{2} = \bruch{\wurzel{2}}{2}[/mm]


Stimmt.

Einfacher geht es so:

              [mm] $e^{it}=cos(t)+i*sin(t)$ [/mm]

FRED

Bezug
                                
Bezug
Komplexe Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:49 Do 06.01.2011
Autor: BarneyS

Für mich ist das, als ob man sich im Kreis dreht ...

Aber nichts für ungut, ansonsten habe ich es verstanden.

Danke

Bezug
                                        
Bezug
Komplexe Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:07 Do 06.01.2011
Autor: fred97


> Für mich ist das, als ob man sich im Kreis dreht ...

Was soll das ?

FRED


>  
> Aber nichts für ungut, ansonsten habe ich es verstanden.
>  
> Danke


Bezug
                                                
Bezug
Komplexe Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:54 Do 06.01.2011
Autor: BarneyS

Ich finde, man dreht sich bei diesem Problem irgendwie im Kreis.

Aus diesen beiden Formeln:

$ [mm] e^{i\varphi}=cos(\varphi)+i\cdot{}sin(\varphi) [/mm] $

$ [mm] cos(\varphi) [/mm] = [mm] \bruch{e^{i\varphi}+e^{-i\varphi}}{2} [/mm] $

folgt:

$ [mm] cos(\bruch{\pi}{4}) [/mm] = [mm] \bruch{cos(\bruch{\pi}{4})+i\cdot{}sin(\bruch{\pi}{4}) + (cos(\bruch{\pi}{4})-i\cdot{}sin(\bruch{\pi}{4}) )}{2} [/mm] = [mm] \bruch{2cos(\bruch{\pi}{4})}{2}=cos(\bruch{\pi}{4}) [/mm] $

Das bedeutet, man kommt hier nur dann weiter, wenn man [mm] $e^{i\bruch{\pi}{4}}$ [/mm] am Einheitskreis in der Form $ a+bi $ betrachtet und das reale und imaginäre Argument mit dem Satz des Pythagoras berechnet.

Bezug
                                                        
Bezug
Komplexe Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Do 06.01.2011
Autor: fred97

Anleitung:

1. Benutze nur

              

$ [mm] e^{i\varphi}=cos(\varphi)+i\cdot{}sin(\varphi) [/mm] $  mit [mm] \varphi= \pi [/mm] /4

2. Berechne

$ [mm] e^{i\varphi} [/mm] $  und stelle es in der Form a+ib dar

3. Dann ist [mm] cos(\varphi)=a [/mm] und [mm] sin(\varphi)=b [/mm]

4. Fertig

5. Kein im Kreis drehen !


FRED

Bezug
                                                                
Bezug
Komplexe Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 Do 06.01.2011
Autor: BarneyS

Ok, mache ich:

$ [mm] e^{i\bruch{\pi}{4}}=cos(\bruch{\pi}{4})+i*sin(\bruch{\pi}{4}) [/mm] = [mm] \bruch{\wurzel{2}}{2}+i*\bruch{\wurzel{2}}{2} [/mm] $

[mm] $\Rightarrow cos(\bruch{\pi}{4}) [/mm] = [mm] \bruch{\wurzel{2}}{2} [/mm] $

Ist das jetzt deiner Meinung nach die Lösung zu der im ersten Beitrag gestellten Aufgabe?

Bezug
                                                                        
Bezug
Komplexe Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:18 Do 06.01.2011
Autor: fred97


> Ok, mache ich:
>  
> [mm]e^{i\bruch{\pi}{4}}=cos(\bruch{\pi}{4})+i*sin(\bruch{\pi}{4}) = \bruch{\wurzel{2}}{2}+i*\bruch{\wurzel{2}}{2}[/mm]
>  
> [mm]\Rightarrow cos(\bruch{\pi}{4}) = \bruch{\wurzel{2}}{2}[/mm]
>  
> Ist das jetzt deiner Meinung nach die Lösung zu der im
> ersten Beitrag gestellten Aufgabe?

Ja, wenn Du noch ergänzt

                             [mm] sin(\bruch{\pi}{4}) [/mm] = [mm] \bruch{\wurzel{2}}{2} [/mm]

FRED


Bezug
                                                                                
Bezug
Komplexe Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:52 Do 06.01.2011
Autor: BarneyS

Ok, ich denke dann sind wir da einfach anderer Meinung. Für mich ist das einfach nur die Darstellung einer komplexen Zahl in der Euler und Polar Form.

Jedoch habe ich so nicht Kosinus von [mm] $\pi$ [/mm] / 4 berechnet, wie es in der Aufgabenstellung gefragt war, sondern lediglich die Werte von Sinus und Kosinus in die komplexe Exponentialfunktion eingesetzt mit dem Wissen, dass Kosinus von [mm] $\pi$ [/mm] / 4 = [mm] $\wurzel{2} [/mm] / 2$ ist.

Daraus dann aber wiederum zu folgern, dass Kosinus  von [mm] $\pi$ [/mm] / 4 = [mm] $\wurzel{2} [/mm] / 2$ ist, ist m.E. so, als ob man sich im Kreis dreht.

Ich hoffe, du verstehst, was ich meine?
Es ist nicht böse, arrogant o.ä. gemeint. Ich möchte es nur verstehen und bin sehr genau dabei. Vielleicht bin ich aber auch nur etwas schwer von Begriff ;-)

Und vielen Dank an alle für die Unterstützung!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de