Komplexe Exponentialfunktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:45 So 22.09.2013 | Autor: | Wolve |
Schönen guten Tag,
meine Frage ist mehr eine Verständnisfrage. Es geht um die Verbindung der komplexen Exponentialfunktion mit der komplexen Potenzfunktion. Ich werde mich dabei in den Ausführungen versuchen knapper, dafür übersichtlicher zu halten.
Bekanntlich gilt wegen der Periodizität der Exponentialfunktion [mm] $exp(z)=exp(z+2\pi [/mm] i)$ mit [mm] $Log_k [/mm] (z)=log|z|+i [mm] Arg(z)+2\pi [/mm] ik$ als dessen Umkehrfunktion mit allen Zweigen. Dabei soll $Arg(z)$ das Argument mit Einschränkung auf den Bildbereich [mm] $]-\pi,\pi[$ [/mm] sein.
Betrachtet man nun die komplexe Potenzfunktion [mm] $a^b$ [/mm] mit [mm] $a\in \IC [/mm] ^x$, [mm] $b\in \IC$, [/mm] dann gilt [mm] $a^b=exp(b*Log_0 [/mm] (a))$ als Hauptzweig der Potenz und [mm] $a^b=exp(b*Log_k [/mm] (a))$ mit [mm] $k\not= [/mm] 0$ als die Nebenzweige der Potenz. (Diese Wahl ist natürlich willkürlich, aber so getroffen)
Nun möchte ich diese beiden Absätze miteinander verbinden.
Für den Hauptzweig ist klar, dass für $a=e$ und $b=z$ gilt: [mm] $e^z=exp(z*Log [/mm] (e))=exp(z*1)=exp(z)$
Für Nebenzweige des Logarithmus müsste bei gleichem Vorgehen meiner Intuition nach [mm] $e^z=exp(z+2\pi [/mm] ik)$ herauskommen. Aber nach Rechnung folgt [mm] $e^z=exp(z*Log_k (e))=exp(z*(log|e|+i*Arg(e)+2\pi ik))=exp(z*(1+0+2\pi ik))=exp(z+z*2\pi [/mm] ik)$
Und es gilt [mm] $exp(z)=exp(z+2\pi ik)=exp(z)*exp(2\pi iz)\not= exp(z)*exp(z*2\pi ik)=exp(z+z*2\pi [/mm] ik)$ [mm] $\gdw$ $exp(2\pi ik)\not= exp(z*2\pi [/mm] ik)$ für alle [mm] $z\in \IC \backslash \IZ$.
[/mm]
Meiner Intuition nach müsste aber theoretisch das gleiche herauskommen. Kann mir jemand bitte sagen wo sich mein Denkfehler eingeschlichen hat?
Danke im Voraus für die aufgewendete Zeit.
Mit freundlichen Grüßen
Wolve
|
|
|
|
Hallo Wolve,
> Bekanntlich gilt wegen der Periodizität der
> Exponentialfunktion [mm]exp(z)=exp(z+2\pi i)[/mm] mit [mm]Log_k (z)=log|z|+i Arg(z)+2\pi ik[/mm]
> als dessen Umkehrfunktion mit allen Zweigen. Dabei soll
> [mm]Arg(z)[/mm] das Argument mit Einschränkung auf den Bildbereich
> [mm]]-\pi,\pi[[/mm] sein.
>
> Betrachtet man nun die komplexe Potenzfunktion [mm]a^b[/mm] mit [mm]a\in \IC ^x[/mm],
> [mm]b\in \IC[/mm], dann gilt [mm]a^b=exp(b*Log_0 (a))[/mm] als Hauptzweig der
> Potenz und [mm]a^b=exp(b*Log_k (a))[/mm] mit [mm]k\not= 0[/mm] als die
> Nebenzweige der Potenz. (Diese Wahl ist natürlich
> willkürlich, aber so getroffen)
>
> Nun möchte ich diese beiden Absätze miteinander
> verbinden.
> Für den Hauptzweig ist klar, dass für [mm]a=e[/mm] und [mm]b=z[/mm] gilt:
> [mm]e^z=exp(z*Log (e))=exp(z*1)=exp(z)[/mm]
> Für Nebenzweige des
> Logarithmus müsste bei gleichem Vorgehen meiner Intuition
> nach [mm]e^z=exp(z+2\pi ik)[/mm] herauskommen. Aber nach Rechnung
> folgt [mm]e^z=exp(z*Log_k (e))=exp(z*(log|e|+i*Arg(e)+2\pi ik))=exp(z*(1+0+2\pi ik))=exp(z+z*2\pi ik)[/mm]
>
> Und es gilt [mm]exp(z)=exp(z+2\pi ik){\red =}exp(z)*exp(2\pi iz)\not= exp(z)*exp(z*2\pi ik)=exp(z+z*2\pi ik)[/mm]
> [mm]\gdw[/mm] [mm]exp(2\pi ik)\not= exp(z*2\pi ik)[/mm] für alle [mm]z\in \IC \backslash \IZ[/mm].
Ich habe noch einmal ein paar Nachfragen. Womit begründest du das rote Gleichheitszeichen? Das ist mir unschlüssig.
Generell solltest du beachten, dass man auch Potenzgesetze im komplexen immer mit Vorsicht genießen sollte. Das berühmte Beispiel mit -1=1 kennst du ja sicherlich.
>
> Meiner Intuition nach müsste aber theoretisch das gleiche
> herauskommen. Kann mir jemand bitte sagen wo sich mein
> Denkfehler eingeschlichen hat?
Wo sollte das gleiche herauskommen? Etwa hier: [mm] exp(2\pi ik)\not= exp(z*2\pi [/mm] ik) ?
Vielleicht kannst du noch einmal ein paar Angaben machen.
Grüße
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 11:27 Do 26.09.2013 | Autor: | Wolve |
Hallo Richie,
Danke für deine Antwort. Hab schon mit keiner mehr gerechnet :)
Das rote Gleichheitszeichen begründe ich mit einem Tippfehler den ich übersehen habe. Ich meinte [mm] $exp(z+2\pi ik)=exp(z)*exp(2\pi [/mm] ik)$ und das wiederum begründe ich durch die Potenzregel [mm] $a^m*a^n=a^{m+n}$.
[/mm]
Durch dein angesprochenes Beispiel ist ja bekannt, dass das Potenzgesetz [mm] $a^n*b^n=(a*b)^n$ [/mm] nicht allgemein ins Komplexe übertragbar ist. Aber soweit ich das aus der Literatur bisher rauslesen konnte kann man [mm] $a^m*a^n=a^{m+n}$ [/mm] in der komplexen Exponentialfunktion, wie ich es getan habe, gefahrlos tun.
In einem meiner Bücher habe ich gefunden, dass man durch die Potenzfunktion mit $a=e$ und $log e = 1$ die gewöhnliche Exponentialfunktion [mm] $e^z$ [/mm] erhält. Daraus habe ich dann die oben ausgeführten Schlüsse gezogen, die leider nicht ganz aufgegangen sind. Gedacht war, dass durch Einfügen der Exponentialfunktion in die allgemeine Potenzfunktion eben Bekanntes rauskommen soll, wie eben [mm] $exp(z+2\pi [/mm] ik)=exp(z)$ für $k [mm] \in \IZ$.
[/mm]
Brauchst du noch mehr Angaben oder lässt sich jetzt schon sagen, dass meine Schlüsse eventuell zu weit hergeholt sind?
Gruß Wolve
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:18 Do 26.09.2013 | Autor: | Marcel |
Hallo,
> Hallo Richie,
>
> Danke für deine Antwort. Hab schon mit keiner mehr
> gerechnet :)
>
> Das rote Gleichheitszeichen begründe ich mit einem
> Tippfehler den ich übersehen habe. Ich meinte [mm]exp(z+2\pi ik)=exp(z)*exp(2\pi ik)[/mm]
> und das wiederum begründe ich durch die Potenzregel
> [mm]a^m*a^n=a^{m+n}[/mm].
>
> Durch dein angesprochenes Beispiel ist ja bekannt, dass das
> Potenzgesetz [mm]a^n*b^n=(a*b)^n[/mm] nicht allgemein ins Komplexe
> übertragbar ist. Aber soweit ich das aus der Literatur
> bisher rauslesen konnte kann man [mm]a^m*a^n=a^{m+n}[/mm] in der
> komplexen Exponentialfunktion, wie ich es getan habe,
> gefahrlos tun.
Du meinst, dass diese Regel für [mm] $a=e\,$ [/mm] und $m,n [mm] \in \IC$ [/mm] sicherlich gilt? Ja, das ist
in der Tat der Fall - der Beweis folgt mittels Cauchyprodukt:
http://www.math.uni-trier.de/~mueller/AnalysisI-IV.pdf, Satz 7.2
Gruß,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:25 Do 26.09.2013 | Autor: | Wolve |
Hallo Marcel,
Danke, dass du diesen Eindruck von mir bestätigen konntest. War doch noch etwas unsicher, ob ich das so allgemeinbindend sagen konnte :)
Gruß
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:20 Mo 30.09.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
> Bekanntlich gilt wegen der Periodizität der
> Exponentialfunktion [mm]exp(z)=exp(z+2\pi i)[/mm] mit [mm]Log_k (z)=log|z|+i Arg(z)+2\pi ik[/mm]
> als dessen Umkehrfunktion mit allen Zweigen. Dabei soll
> [mm]Arg(z)[/mm] das Argument mit Einschränkung auf den Bildbereich
> [mm]]-\pi,\pi[[/mm] sein.
Hallo Wolve,
damit wirklich alle komplexen Zahlen zu ihrem Logarithmus
(bzw. zu den vielen möglichen Logarithmuswerten) kommen,
solltest du für Arg(z) auch noch entweder den Wert [mm] \pi [/mm] oder
aber den Wert [mm] -\pi [/mm] zulassen, also etwa:
[mm] $\mbox{\Large{Arg(z)\ \ \in\ \ \ ]\,-\pi\, ,\,\pi\,]}}$
[/mm]
LG , Al-Chw.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:06 Do 26.09.2013 | Autor: | Wolve |
Hallo Al-Chwarizmi,
Danke für den Hinweis. Dachte nur ich wähle das Argument für das offene Intervall, damit die Logarithmusfunktion stetig bleibt. Wenn ich mich recht entsinne ist die Logarithmusfunktion nur stetig für beispielhaft $Arg: [mm] \IC^- \to ]-\pi,\pi[$ [/mm] mit [mm] $\IC^-$ [/mm] als geschlitzte Ebene. Ist es für die Potenzfunktion dann irrelevant, dass der Logarithmus stetig ist?
LG
|
|
|
|
|
> Hallo Al-Chwarizmi,
>
> Danke für den Hinweis. Dachte nur ich wähle das Argument
> für das offene Intervall, damit die Logarithmusfunktion
> stetig bleibt. Wenn ich mich recht entsinne ist die
> Logarithmusfunktion nur stetig für beispielhaft [mm]Arg: \IC^- \to ]-\pi,\pi[[/mm]
> mit [mm]\IC^-[/mm] als geschlitzte Ebene. Ist es für die
> Potenzfunktion dann irrelevant, dass der Logarithmus stetig
> ist?
Naja, wenn dir die Stetigkeit (auf einem eingeschränkten
Definitionsbereich) wichtiger ist als die Berücksichtigung
der negativen Zahlen, dann ist das deine Sache ...
Da du ja aber ohnehin die mehrwertige Logarithmusfunktion
mit ihren unendlich vielen "Ästen" bzw. "Blättern" be-
trachten willst, kann man auch den Übergang über den
"Schlitz" stetig machen - man muss sich halt einfach auf
das richtige "Blatt" der entsprechenden Riemannschen
Fläche bewegen, d.h. bei Bedarf den Index k der Lösung
$ [mm] Log_k (z)=log|z|+i*Arg(z)+k*2\pi [/mm] i $
um 1 vergrößern oder verkleinern.
LG , Al-Chw.
|
|
|
|