www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Komplexe Fktnen,S.v.Liouville
Komplexe Fktnen,S.v.Liouville < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Fktnen,S.v.Liouville: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:35 Mo 14.05.2007
Autor: cutter

Aufgabe
ZZ:
1a) Ist [mm] f(z)=\sum_{i=0}^{\infty}{c_i*z^i} [/mm] eine ganze Fkt mit [mm] |f(z)|\le [/mm] M und |z|=R,so gilt [mm] |c_k|\le M/R^K [/mm]
b)Ist f(z) ein Polynom mit [mm] |f(z)|\le [/mm] 1 fuer |z| [mm] \le [/mm] 1,so sind die Koeffizienten f(z) betragsmäßig hoechstens 1
c)Ist f(z) ein Polynom vom Grad n mit [mm] |f(z)|\le [/mm] 1 fuer |z| [mm] \le [/mm] 1,so gilt |f(z)| [mm] \le |z|^n [/mm] fuer [mm] |z|\ge [/mm] 1

Hi
nach dem Satz von Liouville folgt ja, dass die Funktionen aus a,b,c konstant sind.
Bei a kann man ja [mm] |c_k|\le M/R^K [/mm] umstellen und kommt auf [mm] |c_k*z^k|\le [/mm] M...nun ist die der Betrag der Summe schon kleiner als M und es handelt sich um eine konstante Fkt. kann ich hier eine Folgerung fuer [mm] |c_k*z^k| [/mm] erlangen ?
bei b fehlt mir noch der hinweis ...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Grüße

        
Bezug
Komplexe Fktnen,S.v.Liouville: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Mo 14.05.2007
Autor: felixf

Hallo cutter!

> ZZ:
>  1a) Ist [mm]f(z)=\sum_{i=0}^{\infty}{c_i*z^i}[/mm] eine ganze Fkt
> mit [mm]|f(z)|\le[/mm] M und |z|=R,so gilt [mm]|c_k|\le M/R^K[/mm]
>  b)Ist
> f(z) ein Polynom mit [mm]|f(z)|\le[/mm] 1 fuer |z| [mm]\le[/mm] 1,so sind die
> Koeffizienten f(z) betragsmäßig hoechstens 1
>  c)Ist f(z) ein Polynom vom Grad n mit [mm]|f(z)|\le[/mm] 1 fuer |z|
> [mm]\le[/mm] 1,so gilt |f(z)| [mm]\le |z|^n[/mm] fuer [mm]|z|\ge[/mm] 1

>

>  Hi
>  nach dem Satz von Liouville folgt ja, dass die Funktionen
> aus a,b,c konstant sind.

Nein, den kannst du hier nicht anwenden, da die Beschraenkung nicht fuer alle $z [mm] \in \IC$ [/mm] gilt, sondern nur fuer bestimmte $z [mm] \in \IC$ [/mm] (naemlich welche die auf einem Kreisring liegen).

Wie du hier weiterkommst: Wende die Cauchysche Integralformel (evtl. zusammen mit der Taylorformel) an und schaetze das Integral per [mm] $|\int_a^b [/mm] f(x) dx| [mm] \le \int_a^b [/mm] |f(x)| dx [mm] \le [/mm] (b - a) [mm] \cdot \sup [/mm] |f(x)|$ ab.

Bei (b) kannst du einfach (a) anwenden, dann bist du sofort fertig.

Zu (c) hab ich gerade keine Idee...

LG Felix


Bezug
                
Bezug
Komplexe Fktnen,S.v.Liouville: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Mo 14.05.2007
Autor: cutter

Hi und danke fuer die Muehe.

Leider verstehe ich nicht, wie ich hier die Cauchy Integralformel anwenden soll...soll ich das integral ueber die Summe bilden oder was meinst du genau ?
Danke und gruß

Bezug
                        
Bezug
Komplexe Fktnen,S.v.Liouville: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Mo 14.05.2007
Autor: felixf

Hi!

> Leider verstehe ich nicht, wie ich hier die Cauchy
> Integralformel anwenden soll...soll ich das integral ueber
> die Summe bilden oder was meinst du genau ?

Die Cauchysche Integralformel besagt doch: [mm] $\frac{k!}{2 \pi i} \int_{|z| = r} \frac{f(z)}{z^{k+1}} \; [/mm] dz = [mm] f^{(k)}(0)$. [/mm]

Und nach Taylor ist $f(z) = [mm] \sum_{k=0}^\infty \frac{f^{(k)}}{k!} z^k$. [/mm]

LG Felix


Bezug
                                
Bezug
Komplexe Fktnen,S.v.Liouville: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Mo 14.05.2007
Autor: cutter

Wie gesagt,danke fuer die muehe...aber ich weiss nicht was ich machen muss....hab total ein brett vorm kopp...ich hab doch nur eine ganze Funktion gegeben und die soll ich nun in Cauchy Gleichung bekommen ..? Sorry!

Bezug
                                        
Bezug
Komplexe Fktnen,S.v.Liouville: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Mo 14.05.2007
Autor: cutter

kannst du mir nochmal weiterhelfen ?...
danke

Bezug
                                                
Bezug
Komplexe Fktnen,S.v.Liouville: Antwort
Status: (Antwort) fertig Status 
Datum: 00:33 Di 15.05.2007
Autor: felixf


> kannst du mir nochmal weiterhelfen ?...
>  danke

Wo genau hapert's denn?

Nach Taylor ist [mm] $c_k [/mm] = [mm] \frac{f^{(k)}(0)}{k!}$. [/mm] Da setzt du jetzt die Cauchysche Integralformel ein. Dann Wandelst du das Kurvenintegral in ein normales Integral um (so wie man das halt immer macht, indem du den Kreis parametrisierst mit [mm] $\gamma(t) [/mm] = [mm] e^{i t} [/mm] R$, $t [mm] \in [/mm] [0, 2 [mm] \pi]$) [/mm] und benutzt dann die Abschaetzung, die ich in meiner ersten Antwort geschrieben habe.

Wenn du damit Probleme hast, schreib bitte was du schon hast und wo genau du steckenbleibst.

LG Felix


Bezug
                                                        
Bezug
Komplexe Fktnen,S.v.Liouville: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 Di 15.05.2007
Autor: cutter

hi
ok
also 1. gedanke

[mm] \frac{k!}{2 \pi i} \int_{|z| = r} \frac{f(z)}{z^{k+1}} \; [/mm] dz = [mm] f^{(k)}(0) [/mm] (*)

aus [mm] c_k [/mm] = [mm] \frac{f^{(k)}(0)}{k!} [/mm]  folgt [mm] c_k*k!=f^{(k)}(0) [/mm]

einsetzen in (*), wuerde mich aber nicht weiter bringen.



Bezug
                                                                
Bezug
Komplexe Fktnen,S.v.Liouville: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 Di 15.05.2007
Autor: felixf

Hallo!

>  ok
>  also 1. gedanke
>  
> [mm]\frac{k!}{2 \pi i} \int_{|z| = r} \frac{f(z)}{z^{k+1}} \;[/mm]
> dz = [mm]f^{(k)}(0)[/mm] (*)
>
> aus [mm]c_k[/mm] = [mm]\frac{f^{(k)}(0)}{k!}[/mm]  folgt [mm]c_k*k!=f^{(k)}(0)[/mm]
>  
> einsetzen in (*),

Genau.

> wuerde mich aber nicht weiter bringen.

Warum schreibst du nicht mal das Kurvenintegral um in ein normales Integral und verwendest du die Abschaetzung aus meiner ersten Antwort? Mach das doch mal und schreib das was du raus hast hier hin.

LG Felix


Bezug
                                                                        
Bezug
Komplexe Fktnen,S.v.Liouville: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Di 15.05.2007
Autor: cutter

Auf ein neues



[mm] c_k=\frac{1}{n!}*f^k(0)=\frac{1}{2 \pi i} \int_{|z| = r} \frac{f(z)}{z^{k+1}} \; [/mm] dz

Def: [mm] d(t):=e^{it} t\in [0,2\pi] [/mm]
dann folgt:
[mm] \int_{d}~f(z)dz [/mm] = [mm] \int_{0}^{2\pi}~f(d(t)*d'(t)dt [/mm]

soweit ist mir das auch klar und ich dann nehme ich den betrag von [mm] |c_k| [/mm] und schaetze ab.
aber ich weiss nicht wie ich [mm] \int_{|z| = r} \frac{f(z)}{z^{k+1}} \; [/mm] dz in ein normales bekomme.......hat ja nicht die form [mm] \int_{d}~f(z)dz [/mm]


grüße

Bezug
                                                                                
Bezug
Komplexe Fktnen,S.v.Liouville: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Di 15.05.2007
Autor: felixf

Hallo cutter!

> [mm]c_k=\frac{1}{n!}*f^k(0)=\frac{1}{2 \pi i} \int_{|z| = r} \frac{f(z)}{z^{k+1}} \;[/mm]
> dz
>  
> Def: [mm]d(t):=e^{it} t\in [0,2\pi][/mm]

Du meinst $d(t) = [mm] e^{i t} [/mm] R$, $t [mm] \in [/mm] [0, 2 [mm] \pi]$, [/mm] oder?

>  dann folgt:
>  [mm]\int_{d}~f(z)dz[/mm] = [mm]\int_{0}^{2\pi}~f(d(t)*d'(t)dt[/mm]

Genau. Also mit einer weiteren Klammer zu vor dem $d'(t)$.

> soweit ist mir das auch klar und ich dann nehme ich den
> betrag von [mm]|c_k|[/mm] und schaetze ab.
>  aber ich weiss nicht wie ich [mm]\int_{|z| = r} \frac{f(z)}{z^{k+1}} \;[/mm]
> dz in ein normales bekomme.......hat ja nicht die form
> [mm]\int_{d}~f(z)dz[/mm]

Also [mm] $\int_{|z| = R} [/mm] f(z) dz$ ist per Definition gerade [mm] $\int_d [/mm] f(z) dz$. Das ist einfach nur eine Kurzschreibweise dafuer, weil man nicht jedesmal die Funktion $d$ explizit hinschreiben will.

LG Felix


Bezug
                                                                                        
Bezug
Komplexe Fktnen,S.v.Liouville: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 Di 15.05.2007
Autor: cutter

aber ich habe doch [mm] \frac{f(z)}{z^{k+1}} [/mm] stehen...was mach ich mt dem nenner?

Bezug
                                                                                                
Bezug
Komplexe Fktnen,S.v.Liouville: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Di 15.05.2007
Autor: felixf

Hi.

> aber ich habe doch [mm]\frac{f(z)}{z^{k+1}}[/mm] stehen...was mach
> ich mt dem nenner?

Definiere $g(z) := [mm] \frac{f(z)}{z^{k+1}}$ [/mm] und schreib [mm] $\int_{|z|=R} [/mm] g(z) [mm] \; [/mm] dz = [mm] \int_d [/mm] g(z) [mm] \; [/mm] dz$ zu nem normalen Integral um. Und dann wende die Integralabschaetzung an.

LG Felix



Bezug
                                                                                                        
Bezug
Komplexe Fktnen,S.v.Liouville: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Mi 16.05.2007
Autor: cutter

Hi habs nun endlich hinbekommen.=)Danke
Jetzt nur noch eine kurze Frage.
Du sagst die b) geht direkt aus der a) hervor.
Nur frag ich mich gerade

warum [mm] \frac{M}{R^k} [/mm] immer kleiner als 1 ist. R ist doch der Betrag von z und z ist betragsmäßig kleiner als 1. Kann dann nicht [mm] \frac{M}{R^k} [/mm] größer als eins werden und damit kann ich keine abschaetzung fuer die vorfaktoren machen ?

LG

Bezug
                                                                                                                
Bezug
Komplexe Fktnen,S.v.Liouville: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 Do 17.05.2007
Autor: felixf

Hallo cutter,

> Hi habs nun endlich hinbekommen.=)Danke
>  Jetzt nur noch eine kurze Frage.
>  Du sagst die b) geht direkt aus der a) hervor.
>  Nur frag ich mich gerade
>
> warum [mm]\frac{M}{R^k}[/mm] immer kleiner als 1 ist. R ist doch der
> Betrag von z und z ist betragsmäßig kleiner als 1. Kann
> dann nicht [mm]\frac{M}{R^k}[/mm] größer als eins werden und damit
> kann ich keine abschaetzung fuer die vorfaktoren machen ?

waehle doch einfach $R = 1$; nach Voraussetzung ist $M = 1$, und du hast [mm] $|c_i| \le \frac{M}{R^i} [/mm] = 1$.

Nur weil $|f(z)| [mm] \le [/mm] 1$ fuer alle $|z| [mm] \le [/mm] 1$ gilt musst du das ja nicht fuer alle $R [mm] \le [/mm] 1$ anwenden, du kannst dir irgendein $R [mm] \in [/mm] ]0, 1]$ aussuchen. Und $R = 1$ liefert halt genau die gewuenschte Aussage.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de