www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Komplexe Gleichung
Komplexe Gleichung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:46 Sa 24.05.2008
Autor: MatheIstToll

Aufgabe
Lösen Sie die komplexe Gleichung:
[mm] $z^{2}+2*z^{\*}=4$ [/mm]

Mein Ansatz dazu ist nun der folgende:

Zuerst $z=a+j*b$ einsetzten und Real- und Imaginär-teil trennen:
[mm] $z^{2}+2*z^{\*}=4$ [/mm]
[mm] $(2+i*b)^{2}+2*(a-i*b)=4$ [/mm]
[mm] $a^{2}+2*i*a*b-b^{2}+2*a-2*i*b=4$ [/mm]
[mm] $a^{2}-b^{2}+2*a+j*(2*a*b-2*b)$ [/mm]


So, nun per Koeffizientenvergleich erhält man zwei Gleichungen:
[mm] $a^{2}-b^{2}+2*a=4$ [/mm] und $2*a*b-2*b=0$

Die zweite nun nach b umgestellt ergibt $b=0$.
Dies wiederum in die 1. eingesetzt ergibt $a=0 [mm] \vee [/mm] a=-2$

also bekomme ich $z=-2 [mm] \vee [/mm] z=0$, allerdings stimmt dieses Ergebnis ja ganz offensichtlich nicht.

Also, würde ich nun gerne wissen wo mein Fehler liegt und wie komme ich aufs richtige Ergebnis?



Ganz nebenbei, würde mich mal interessieren ob es eine Möglichkeit gibt solche Aufgabe z.B. in Maple zu lösen? Dort bekomme ich solche Aufgaben leider auch nicht gelöst.



Vielen Dank schon mal im Voraus :)
/Sebastian



PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Komplexe Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Sa 24.05.2008
Autor: Martinius

Hallo,

> Lösen Sie die komplexe Gleichung:
>  [mm]z^{2}+2*z^{\*}=4[/mm]
>  Mein Ansatz dazu ist nun der folgende:
>  
> Zuerst [mm]z=a+j*b[/mm] einsetzten und Real- und Imaginär-teil
> trennen:
>  [mm]z^{2}+2*z^{\*}=4[/mm]
>  [mm](2+i*b)^{2}+2*(a-i*b)=4[/mm]
>  [mm]a^{2}+2*i*a*b-b^{2}+2*a-2*i*b=4[/mm]
>  [mm]a^{2}-b^{2}+2*a+j*(2*a*b-2*b)[/mm]
>  
>
> So, nun per Koeffizientenvergleich erhält man zwei
> Gleichungen:
>  [mm]a^{2}-b^{2}+2*a=4[/mm] und [mm]2*a*b-2*b=0[/mm]

Bis hierhin ist es richtig.

  

> Die zweite nun nach b umgestellt ergibt [mm]b=0[/mm].
>  Dies wiederum in die 1. eingesetzt ergibt [mm]a=0 \vee a=-2[/mm]
>  
> also bekomme ich [mm]z=-2 \vee z=0[/mm], allerdings stimmt dieses
> Ergebnis ja ganz offensichtlich nicht.
>  
> Also, würde ich nun gerne wissen wo mein Fehler liegt und
> wie komme ich aufs richtige Ergebnis?
>  
>
>
> Ganz nebenbei, würde mich mal interessieren ob es eine
> Möglichkeit gibt solche Aufgabe z.B. in Maple zu lösen?
> Dort bekomme ich solche Aufgaben leider auch nicht gelöst.
>  
>
>
> Vielen Dank schon mal im Voraus :)
>  /Sebastian


Die zweite Gleichung

$2b(a-1)=0$

liefert dir zwei Alternativen: Entweder b=0 oder a=1. Damit gehst Du in die erste Gleichung ein:

b=0 liefert

[mm] $a^2+2a-4=0$ [/mm]  

mit den beiden Lösungen  

[mm] $a_{1,2}=z_{1,2}=-1\pm\wurzel{5}$ [/mm]

Das wären zwei reelle Zahlen, die deine Gleichung lösen.


Die 2. Alternative:  a = 1 liefert in die 1. Gleichung eingesetzt

[mm] $1-b^2+2=4$ [/mm]

[mm] $b_{1,2}=\pm [/mm] i$

[mm] $z_1=a+ib=1+i^2=0$ [/mm]  und  [mm] $z_2=a+ib=a-i^2=2$ [/mm]

, die beide die Gleichung nicht lösen.


LG, Martinius

Bezug
                
Bezug
Komplexe Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:50 Sa 24.05.2008
Autor: MatheIstToll

Danke! Also war ich vor lauter komplexen Zahlen nur zu doof die Quadratische Gleichung richtig zu lösen *grml*

Aber gut zu wissen dass dabei auch Lösungen rauskommen können die nicht passen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de