www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Gleichungssystem
Komplexe Gleichungssystem < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:32 Mi 14.12.2011
Autor: sissile

Aufgabe
Bestimmen sie alle komplexen Lösungen
[mm] z^2 [/mm] - 5z + 5-3i=0

Hab Probleme mit der Glg.

[mm] z_{1,2} [/mm] = 5/2 [mm] \pm \wurzel{ 25/4 -5+3i} [/mm]
[mm] z_{1,2} [/mm] = 5/2 [mm] \pm \wurzel{ 5/4+3i} [/mm]

z= [mm] n^2 [/mm]
z= 5/4+3i
n= (a+bi)
[mm] n^2= (a^2-b^2) [/mm] + i * (2ab)

I [mm] a^2 [/mm] - [mm] b^2 [/mm] = 5/4
II 2ab=3
III |z| = [mm] a^2 [/mm] + [mm] b^2 [/mm]
III [mm] \wurzel{ 169/16} =a^2 [/mm] + [mm] b^2 [/mm]

I + II
-> wie soll ich das ohne TR lösen

LG

        
Bezug
Komplexe Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 Mi 14.12.2011
Autor: MathePower

Hallo sissile,

> Bestimmen sie alle komplexen Lösungen
>  [mm]z^2[/mm] - 5z + 5-3i=0
>  Hab Probleme mit der Glg.
>  
> [mm]z_{1,2}[/mm] = 5/2 [mm]\pm \wurzel{ 25/4 -5+3i}[/mm]
>  [mm]z_{1,2}[/mm] = 5/2 [mm]\pm \wurzel{ 5/4+3i}[/mm]
>  
> z= [mm]n^2[/mm]
>  z= 5/4+3i
>  n= (a+bi)
>  [mm]n^2= (a^2-b^2)[/mm] + i * (2ab)
>  
> I [mm]a^2[/mm] - [mm]b^2[/mm] = 5/4
>  II 2ab=3
>  III |z| = [mm]a^2[/mm] + [mm]b^2[/mm]
>  III [mm]\wurzel{ 169/16} =a^2[/mm] + [mm]b^2[/mm]
>  
> I + II
>  -> wie soll ich das ohne TR lösen

>  


Hier ist etwas anders vorzugehen:

Löse Gleichung II nach einer Variablen auf
und ersetze sie in Gleichung I.
Löse dann Gleichung I nach der anderen Variablen auf.


> LG


Gruss
MathePower

Bezug
                
Bezug
Komplexe Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:49 Mi 14.12.2011
Autor: sissile


> > Bestimmen sie alle komplexen Lösungen
>  >  $ [mm] z^2 [/mm] $ - 5z + 5-3i=0

> > $ [mm] z_{1,2} [/mm] $ = 5/2 $ [mm] \pm \wurzel{ 25/4 -5+3i} [/mm] $
>  >  $ [mm] z_{1,2} [/mm] $ = 5/2
> $ [mm] \pm \wurzel{ 5/4+3i} [/mm] $
>  >  
> > z= $ [mm] n^2 [/mm] $
>  >  z= 5/4+3i
>  >  n= (a+bi)
>  >  $ [mm] n^2= (a^2-b^2) [/mm] $ + i * (2ab)
>  >  
> > I $ [mm] a^2 [/mm] $ - $ [mm] b^2 [/mm] $ = 5/4
>  >  II 2ab=3

> Löse Gleichung II nach einer Variablen auf
>  und ersetze sie in Gleichung I.
>  Löse dann Gleichung I nach der anderen Variablen auf

II a= 3/2b
I $ [mm] 9/(4b^2) [/mm] $ - $ [mm] b^2 [/mm] $ = 5/4
<=> $ [mm] -4b^4 [/mm] $ - $ [mm] 5b^2 [/mm] $ +9=0
<=> $ [mm] -4u^2-5u [/mm] $ + 9 =0
$ [mm] u_{1,2} [/mm] $ = $ [mm] \frac{5 \pm \wurzel{25+144}}{-8} [/mm] $
[mm] u_{1,2} [/mm] =$ [mm] \frac{5 \pm 13}{-8} [/mm] $
$ [mm] u_1 [/mm] $ = 1, $ [mm] u_2 [/mm] $ = -9/4
$ [mm] b_1= [/mm] $ 1, $ [mm] b_2 [/mm] $ = -3/2
Stimmt dass so?

Bezug
                        
Bezug
Komplexe Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:17 Mi 14.12.2011
Autor: sissile

Da kann irgendwo etwas nicht simmen. FInde meinne fehler im letzter Beitrag aber nicht!

Bezug
                        
Bezug
Komplexe Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Mi 14.12.2011
Autor: MathePower

Hallo sissile,

> > > Bestimmen sie alle komplexen Lösungen
>  >  >  [mm]z^2[/mm] - 5z + 5-3i=0
>  
> > > [mm]z_{1,2}[/mm] = 5/2 [mm]\pm \wurzel{ 25/4 -5+3i}[/mm]
>  >  >  [mm]z_{1,2}[/mm] =
> 5/2
>  > [mm]\pm \wurzel{ 5/4+3i}[/mm]

>  >  >  
> > > z= [mm]n^2[/mm]
>  >  >  z= 5/4+3i
>  >  >  n= (a+bi)
>  >  >  [mm]n^2= (a^2-b^2)[/mm] + i * (2ab)
>  >  >  
> > > I [mm]a^2[/mm] - [mm]b^2[/mm] = 5/4
>  >  >  II 2ab=3
>  
> > Löse Gleichung II nach einer Variablen auf
>  >  und ersetze sie in Gleichung I.
>  >  Löse dann Gleichung I nach der anderen Variablen auf
>  
> II a= 3/2b
>  I [mm]9/(4b^2)[/mm] - [mm]b^2[/mm] = 5/4
>  <=> [mm]-4b^4[/mm] - [mm]5b^2[/mm] +9=0

>  <=> [mm]-4u^2-5u[/mm] + 9 =0

>  [mm]u_{1,2}[/mm] = [mm]\frac{5 \pm \wurzel{25+144}}{-8}[/mm]
>  [mm]u_{1,2}[/mm] =[mm] \frac{5 \pm 13}{-8}[/mm]
>  
> [mm]u_1[/mm] = 1, [mm]u_2[/mm] = -9/4
>  [mm]b_1=[/mm] 1, [mm]b_2[/mm] = -3/2


[mm]b_{2}[/mm] muss lauten: [mm]b_{2}=\pm i*\bruch{3}{2}[/mm]

Für [mm]b_{1}[/mm] gibt es natürlich auch zwei Lösungen:

[mm]b_{1}=\pm 1[/mm]


>  Stimmt dass so?  


Gruss
MathePower

Bezug
                                
Bezug
Komplexe Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:52 Mi 14.12.2011
Autor: sissile

ah, gut danke!
$ [mm] b_{2} [/mm] $ muss lauten: $ [mm] b_{2}=\pm i\cdot{}\bruch{3}{2} [/mm] $
$ [mm] b_{1}=\pm [/mm] 1 $

a= 3/(2b)
[mm] a_{1} [/mm] = [mm] \pm [/mm] 3/2
[mm] a_{2} [/mm] = [mm] \pm [/mm] i

[mm] z_1 [/mm] = [mm] \pm [/mm] 3/2  [mm] \pm [/mm] i
[mm] z_2 [/mm] = i * 1/2
[mm] z_3 [/mm] = - i * 1/2

Ist das korrekt und jetzt noch jeweils 5/2 [mm] \pm [/mm] z ?

[mm] z_1= [/mm] 1-i
[mm] z_2=4+i [/mm]
[mm] z_3=5/2 [/mm] + i/2
[mm] z_4 [/mm] = 5/2 -i/2

Problem: In Musterlösung ist [mm] z_1 [/mm] und [mm] z_2 [/mm] genauso da aber [mm] z_3 [/mm] und [mm] z_4 [/mm] gibt es nicht!

Bezug
                                        
Bezug
Komplexe Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 01:33 Do 15.12.2011
Autor: leduart

Hallo
a und b waren doch reelle Zahlen, also hast du nur b1=1, b2=-1 a1=3/2 [mm] a_2=-3/2 [/mm]
sonst keine lösung. eine wuadratwurzel hat immer nur 2 Lösungen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de