www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Komplexe Polynome
Komplexe Polynome < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Polynome: Frage+Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:00 Do 13.01.2005
Autor: darkcoldknight

Hallo! Weis jemand von euch, gibt es irgendein Schema um bei einem polynom ohne Polynomdivision zu einer Faktorzerlegung zu kommen. Beispiel wäre diese Aufgabe: P(z) = [mm] z^6 [/mm] - 7z^3i + 8 entspricht P(z) = [mm] (z^3 [/mm] - [mm] 8i)*(z^3 [/mm] + i).Wie erhalte ich diese Zerlegung? Ein Lösungsansatz würde mir das Lösen komplexer Gleichungen wahnsinnig vereinfachen. Danke! Das weitere Vorgehen zur Nullstellenbestimmung ist mir dann klar.

        
Bezug
Komplexe Polynome: Zu dem Beispiel - Tipps
Status: (Antwort) fertig Status 
Datum: 18:19 Do 13.01.2005
Autor: Marcel

Hallo!

> Hallo! Weis jemand von euch, gibt es irgendein Schema um
> bei einem polynom ohne Polynomdivision zu einer
> Faktorzerlegung zu kommen. Beispiel wäre diese Aufgabe:
> P(z) = [mm]z^6[/mm] - 7z^3i + 8 entspricht P(z) = [mm](z^3[/mm] - [mm]8i)*(z^3[/mm] +

Na, setze doch mal:
[mm] $P(z_N)=0$ [/mm] (d.h. [mm] $z_N$ [/mm] soll Nullstelle von $P$ sein). Dann erhältst du die Nullstellen von $P$. Wie kann man dieses Polynom dann mithilfe der Nullstellen als Produkt darstellen?

Falls du Probleme beim Lösen der Gleichung:
[mm] $(\star)$ $(z_N)^6-7(z_N)^3i+8=0$ [/mm] haben solltest, dann substituiere:
[mm] $x:=(z_N)^3$ [/mm] und beachte [mm] $(z_N)^6=((z_N)^3)^2=x^2$. [/mm]

Jetzt schreibe [mm] $(\star)$ [/mm] um in eine (quadratische) Gleichung in der Variablen $x$. Diese Gleichung solltest du dann in der Variablen $x$ lösen können und erhältst zwei Lösungen [mm] $x_1$, $x_2$ [/mm] (bitte versuche mal, [mm] $x_1,x_2$ [/mm] auszurechnen und poste dein Ergebnis. Eigentlich solltest du es auch alleine kontrollieren können, wenn du deine eigene Frage nochmal liest. ;-))
Dann gilt:
[mm] $0=(x-x_1)*(x-x_2)$ [/mm]
[mm] $\stackrel{(z_N)^3=x}{\gdw}$ [/mm]
[mm] $\blue{0=((z_N)^3-x_1)*((z_N)^3-x_2)}$ [/mm]
[mm] $\gdw$ [/mm]
[mm] $(z_N)^6-7(z_N)^3i+8=0$ [/mm]

Die blaue Gleichung ist für dich interessant!
Hier kann ich jetzt aufhören, weil ihr $P$ ja nur als Produkt zweier Faktoren geschrieben habt. Sonst würde ich noch ein bisschen weitermachen; aber das reicht jetzt ja an dieser Stelle, um zu eurer Faktorzerlegung zu gelangen. :-)

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de