www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahl in a+bi bringen
Komplexe Zahl in a+bi bringen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahl in a+bi bringen: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:03 Mi 16.01.2013
Autor: ninime

Aufgabe
Bringen Sie

[mm] \bruch{2+i}{3-i} [/mm]

in die Form a+bi

Hallo,

die Aufgabe hab ich so gerechnet:

[mm] \bruch{(2+i)(3-i)}{(3-i)(3-i)}=\bruch{6+1+3i+1}{9-3i-3i-1}=\bruch{8+3i}{9+1+1+1-1}=\bruch{8+3i}{11}=\bruch{8}{11}+\bruch{3}{11}i [/mm]

laut online rechner lautet das Ergebnis aber: 1+0,5i

Könnt ihr mir sagen, was ich anders machen muss?

        
Bezug
Komplexe Zahl in a+bi bringen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Mi 16.01.2013
Autor: Diophant

Hallo,

> Bringen Sie
>
> [mm]\bruch{2+i}{3-i}[/mm]
>
> in die Form a+bi
> Hallo,
>
> die Aufgabe hab ich so gerechnet:
>
> [mm]\bruch{(2+i)(3-i)}{(3-i)(3-i)}=\bruch{6+1+3i+1}{9-3i-3i-1}=\bruch{8+3i}{9+1+1+1-1}=\bruch{8+3i}{11}=\bruch{8}{11}+\bruch{3}{11}i[/mm]
>
> laut online rechner lautet das Ergebnis aber: 1+0,5i
>
> Könnt ihr mir sagen, was ich anders machen muss?

Ja, das ist sogar sehr schnell erledigt: du musst mit (3+i) erweitern, sonst erhältst du keine reelle Zahl im Nenner. Und deine weitere Rechnung wimmelt nur so von Fehlern...


Gruß, Diophant


Bezug
                
Bezug
Komplexe Zahl in a+bi bringen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Mi 16.01.2013
Autor: ninime

Aber es ist doch richtig, dass [mm] i^{2}=2i=-1 [/mm] ist, oder?

Wenn ich dann mit (3+i) erweitere komme ich auf folgendes:

[mm] \bruch{6+2i+3i+i^{2}}{9+3i-3i-i^{2}}=\bruch{6-1+3i-1}{9+1}=\bruch{4+3i}{10}=\bruch{4}{10}+\bruch{3}{10}i [/mm]

Das kann ja auch nicht stimmen :-(

Bezug
                        
Bezug
Komplexe Zahl in a+bi bringen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Mi 16.01.2013
Autor: schachuzipus

Hallo ninime,


> Aber es ist doch richtig, dass [mm]i^{2}=2i=-1[/mm] ist, oder?

[mm] $i^2=-i$, [/mm] aber [mm] $i^2=i\cdot{}i\neq [/mm] 2i$ ...

>  
> Wenn ich dann mit (3+i) erweitere komme ich auf folgendes:
>  
> [mm]\bruch{6+2i+3i+i^{2}}{9+3i-3i-i^{2}}=\bruch{6-1+3i-1}{9+1}=\bruch{4+3i}{10}=\bruch{4}{10}+\bruch{3}{10}i[/mm]

Der Fehler ist, dass du fälschlicherweise annimmst (aus welchem Grund auch immer?), dass $2i=-1$ ist. Das ist es aber nicht.

Im Zähler steht zusammengefasst $5+2i+3i=5+5i$

>  
> Das kann ja auch nicht stimmen :-(

Gruß

schachuzipus


Bezug
                        
Bezug
Komplexe Zahl in a+bi bringen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Mi 16.01.2013
Autor: fred97


> Aber es ist doch richtig, dass [mm]i^{2}=2i=-1[/mm] ist, oder?
>  
> Wenn ich dann mit (3+i) erweitere komme ich auf folgendes:
>  
> [mm]\bruch{6+2i+3i+i^{2}}{9+3i-3i-i^{2}}=\bruch{6-1+3i-1}{9+1}=\bruch{4+3i}{10}=\bruch{4}{10}+\bruch{3}{10}i[/mm]
>  
> Das kann ja auch nicht stimmen :-(

Es stimmt ja auch nicht, dass [mm] i^{2}=2i [/mm]

Wenn das so wäre, so hätten wir i =0 oder i=2.

FRED


Bezug
                                
Bezug
Komplexe Zahl in a+bi bringen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:40 Mi 16.01.2013
Autor: ninime

Da stand ich aufm Schlauch. Ohne diesen Denkfehler ists easy, danke danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de