www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen
Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:33 Mi 26.03.2014
Autor: Phencyclidine

Aufgabe
Berechnen sie :

(2+i)/(3+4i)

Bestimmen sie den Real und Imaginärteil von z = 1+ e^(i*k  ) k ist ungleich [mm] \pi [/mm]          w = z^-1

c) Geben sie alle Lösungen der Gleichung [mm] z^6 [/mm] = 1 an


So dann fange ich mal an:

a ) 2+i/3+4i * 3-4i/3-4i = [mm] 6-8i+3i-4i^2 [/mm] / [mm] 9-12i+12i-16i^2 i^2 [/mm] = -1

= 6-5i+4 / 9 + 16  = 10 - 5i / 25 = 2/5 - 1/5 i

b )

z = 1 + e^(i * k)  w = z^-1

z^-1 = -1 + e^(-i * k )

= -1 + (cos(-k) - i * sin(-k)

Re(z) = -1 + cos(-k)
Im (z) = i*sin(k)

c )
[mm] z^6 [/mm] = 1

Ich verstehe die Aufgabe nicht wirklich um ehrlich zu sein, was ich aber schon sagen kann das zwei der 6 Lösungen

z1 = 1    z2= -1 ist weil man ja [mm] \wurzel[6]{1} [/mm] = 1 und - [mm] \wurzel[6]{1}=-1 [/mm]



        
Bezug
Komplexe Zahlen: zu Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 17:47 Mi 26.03.2014
Autor: Loddar

Hallo Phencyclidine!


> Berechnen sie : (2+i)/(3+4i)
>
> a ) 2+i/3+4i * 3-4i/3-4i = [mm]6-8i+3i-4i^2[/mm] / [mm]9-12i+12i-16i^2 i^2[/mm] = -1
> = 6-5i+4 / 9 + 16 = 10 - 5i / 25 = 2/5 - 1/5 i

Das Endergebnis ist erstaunlicherweise richtig. [ok]

Aber die Darstellung ist der blanke Horror. [eek]
Das fängt bei fehlenden (aber zwingenden!) Klammern an. In der Aufgabenstellung schreibst Du sie noch - und urplötzlich sind sie weg.

Dann steht da ein Term, der urplötzlich -1 sein soll, was aber auch gleichzeitig wieder etwa anderes Wildes wird. [kopfschuettel]
Von mir gäbe es hier trotz richtigem Ergebnis etwas sehr nahe bei Null Punkten!


Gruß
Loddar

Bezug
        
Bezug
Komplexe Zahlen: zu Aufgabe c.)
Status: (Antwort) fertig Status 
Datum: 17:56 Mi 26.03.2014
Autor: Loddar

Hallo Phencyclidine!


Bei Aufgabe c.) drängt sich förmlich die Anwendung der MBMoivre-Formel auf.


Gruß
Loddar

Bezug
        
Bezug
Komplexe Zahlen: zu Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 18:10 Mi 26.03.2014
Autor: Loddar

Hallo Phencyclidine!


> z = 1 + e^(i * k) w = z^-1
>
> z^-1 = -1 + e^(-i * k )
>
> = -1 + (cos(-k) - i * sin(-k)
>
> Re(z) = -1 + cos(-k)
> Im (z) = i*sin(k)

Was Du hier machst, erschließt sich mir überhaupt nicht.
Ich befürchte, dass Du beim Kehrwert auch (ansatzweise) die Kehrwerte der beiden Summanden einzeln gebildet hast. [eek]

Und am Ende kann der Imaginärteil auch nur eine reelle Zahl sein (also ohne imaginäre Einheit [mm]i_[/mm] ).



Beginne wie folgt:

[mm]z^{-1} \ = \ \bruch{1}{z} \ = \ \bruch{1}{1+ \ \blue{e^{i*k}}}[/mm]

[mm]= \ \bruch{1}{1+ \ \blue{\cos(k)+i*\sin(k)}[/mm]

Erweitere diesen Bruch nun mit [mm]\left[ \ (1+\cos(k)) \ \red{-} \ i*\sin(k) \ \right][/mm] , um den Nenner reell zu machen.


Gruß
Loddar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de