www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Komplexe Zahlen
Komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Do 17.05.2007
Autor: lubalu

Aufgabe
Es sei z [mm] \in \IC. [/mm] Zeigen Sie:

[mm] \left|z+1\right| [/mm] > [mm] \left|z-1\right| \gdw [/mm] Re(z)>0


Hallo.

Hab jetzt mal bei der [mm] \Rightarrow-Richtung [/mm] gecshrieben:
[mm] \left|z+1\right|=\left|(x+1)+i*y\right|=\wurzel{(x+1)^2+y^2} [/mm]
Ebenso: [mm] \left|z-1\right|=...=\wurzel{(x-1)^2+y^2}. [/mm]
Soweit so gut...aber wie komm ich dann jetzt auf die Folgerung Re(z)>0.
[mm] \left|z+1\right|>\left|z-1\right| [/mm] ist ja klar, weil [mm] (x+1)^2>(x-1)^2, [/mm] oder?!
Und was mach ich dann bei der Rückrichtung?

Vielen Dank, Marina

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Do 17.05.2007
Autor: SEcki


>  [mm]\left|z+1\right|>\left|z-1\right|[/mm] ist ja klar, weil
> [mm](x+1)^2>(x-1)^2,[/mm] oder?!

Öhm, nö, das stimmt nur für bestimmte x ... also für welche, die genau deine Bedingungen erfüllen. Setze mal [m]x=-1[/m] ein!

SEcki

Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:45 Do 17.05.2007
Autor: lubalu

Ja,stimmt...aber jetzt komm ich erst recht nicht mehr weiter!:-)

Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 Do 17.05.2007
Autor: Event_Horizon

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo!

Eigendlich ist dein erster Ansatz doch schon gut:

$\wurzel{(x+1)^2+y^2}>\wurzel{(x-1)^2+y^2}$

DAs kann gefahrlos quadriert werden, weil das unter der Wurzel eh immer positiv ist.

$(x+1)^2+y^2}>{(x-1)^2+y^2}$

Jetzt  zieht man das y ab:

$(x+1)^2}>{(x-1)^2}$

Um sich jetzt nicht mit Wurzeln rumzuschlagen (Fallunterscheidung), hier einfach mal die binomischen Formeln anwenden:

$2x>-2x$

Und das gilt nur für x>0.


Wenn du genau hin schaust, waren das alles äquivalenzumformungen, weil da niemals was negatives im Spiel war, demnach reicht das.

Bezug
                                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:35 Fr 18.05.2007
Autor: lubalu

Ah ja,ok...Hab ich jetzt soweit verstanden...Aber was mach ich denn bei der [mm] \Leftarrow [/mm] Richtung?Also wenn Re(z)>0 gegeben ist und ich dann [mm] \right|z+1\left|>\right|z-1\left| zeigen muss?!Wie soll ich da anfangen?! [/mm]
Bezug
                                        
Bezug
Komplexe Zahlen: nicht erforderlich
Status: (Antwort) fertig Status 
Datum: 12:41 Fr 18.05.2007
Autor: Loddar

Hallo lubalu!

So wie Event_Horizon oben bereits geschrieben hat: da er in seinem Nachweis lediglich Äquivalenzumformungen benutzt hat, ist die Rückrichtung nicht mehr separat zu zeigen.


Gruß
Loddar


Bezug
                                                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:43 Fr 18.05.2007
Autor: lubalu

Achso...ja,stimmt...hab ich wohl überlesen! Danke nochmal!
Grüße, Marina

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de