www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen
Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:01 Do 10.04.2008
Autor: Bodo0686

Aufgabe
Stellen Sie die folgenden komplexen Zahlen in der Form x+iy mit x,y [mm] \in \IR [/mm]

Hallo,

stehe ein wenig aufm Schlauch.
Komme mit folgenden beiden "leichten" Aufgaben nicht zurecht. Hoffe ihr könnt mir kurz auf die Sprünge helfen....

(c) [mm] (1+i)^{2008} [/mm]
(d) [mm] \wurzel[3]{i} [/mm]

Danke und Grüße

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:10 Do 10.04.2008
Autor: subclasser

Hallo Bodo!

zur c) [mm] $(1+i)^{2008} [/mm] = [mm] ((1+i)^2)^{1004}$ [/mm]
zur d) Polarform

Gruß,

Stephan

Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:48 Do 10.04.2008
Autor: Bodo0686

Hallo,

wenn ich mir doch im Fall d) folgendes betrachte: [mm] i^2= [/mm] -1

i = [mm] (a+bi)^3 [/mm] = [mm] a^3 [/mm] + [mm] 3a^{2}bi [/mm] + [mm] 3abi^2 +bi^3 [/mm]
= [mm] a^3 [/mm] + [mm] 3a^{2}bi [/mm] + 3ab(-1) +(-1)bi
= [mm] a^3 +3a^{2}bi [/mm] -3ab -bi ...

jetzt komm ich nicht mehr weiter...

Anderes Beispiel:

[mm] \wurzel{i} [/mm]

gleicher Ansatz wie oben:
i [mm] =(a+bi)^2 [/mm] = [mm] a^2 [/mm] +2abi [mm] +bi^2 [/mm] = [mm] a^2 [/mm] +2abi - b = (jetzt PQ Formel) -abi [mm] \pm \wurzel{abi^2 +b} [/mm] = -abi [mm] \pm [/mm] abi + [mm] \wurzel{b} [/mm]
= x1 = [mm] \wurzel{b} [/mm] und x2 = -2abi + [mm] \wurzel{b}... [/mm]

stimmt das so?

Bitte um kurze Rückmeldung... Danke...
Grüße


Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:10 Do 10.04.2008
Autor: angela.h.b.


> Hallo,
>  
> wenn ich mir doch im Fall d) folgendes betrachte: [mm]i^2=[/mm] -1
>  
> i = [mm](a+bi)^3[/mm] = [mm]a^3[/mm] + [mm]3a^{2}bi[/mm] + [mm]3ab^2i^2 +bi^3[/mm]
>  = [mm]a^3[/mm] +
> [mm]3a^{2}bi[/mm] + [mm] 3ab^2(-1) [/mm] +(-1)bi
>  = [mm]a^3 +3a^{2}bi[/mm] [mm] -3ab^2 [/mm] -bi ...
>  
> jetzt komm ich nicht mehr weiter...

Hallo

[mm] ...=(a^3-3ab^2) [/mm] + [mm] (3a^{2}b-b)*i [/mm]

Und jetzt kannst Du die Koeffizienten mit denen von i=0+1*i vergleichen und im Idealfall ausrechnen, für [mm] \wurzel{i} [/mm] könntest Du das auch so machen.

Hast Du denn subclassers Tip zu d) mal bedacht und womöglich umgesetzt?
Am besten, Du berechnest die Sache mal auf beide Arten.

Gruß v. Angela






Bezug
                                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:36 Do 10.04.2008
Autor: Bodo0686

Hallo,

also: Hinweis: Polarform

[mm] z=r*(cos\Phi +i*sin\Phi) [/mm]

Bsp für 1+i
|1+i| = [mm] \wurzel(2) [/mm]
[mm] tan\Phi [/mm] = [mm] \bruch{b}{a} [/mm] = [mm] \bruch{1}{1}= 1=\Phi [/mm] = 45°

Also: [mm] \wurzel(2)(cos45°+isin45°) [/mm] =1+i

Für [mm] \wurzel[3]{i} [/mm] = [mm] |\wurzel[3]{i}|= \wurzel(1) [/mm]
[mm] tan\Phi [/mm] = [mm] 1=\Phi [/mm] = 45°
Also: [mm] \wurzel(1)(cos45°+isin45°) =\wurzel[3]{i} [/mm]

Grüße...


Bezug
                                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 Do 10.04.2008
Autor: angela.h.b.

Hallo,

bitte spendiere doch ein wenig verbindenden Text, so daß man sofort weiß, was Du zu tun gedenkst.
Auch für Dich selbst ist das eine Hilfe. Man verstrickt sich dann nicht so leicht im eigenen Netz, wenn Ziel und Plan zur Erreichung desselbigen  schriftlich niedergelegt sind.

> also: Hinweis: Polarform
>  
> [mm]z=r*(cos\Phi +i*sin\Phi)[/mm]
>  
> Bsp für 1+i

Du möchtest nun also die komplexe Zahl z=1+i in der Polarform darstellen.
Hierfür berechnest Du zunächst den Betrag der Zahl

> |1+i| = [mm]\wurzel(2)[/mm],

dann den zugehörigen Winkel [mm] \phi [/mm]

>  [mm]tan\Phi[/mm] = [mm]\bruch{b}{a}[/mm] = [mm]\bruch{1}{1}= 1=\Phi[/mm] = 45°
>  
> Also: [mm]\wurzel(2)(cos45°+isin45°)[/mm] =1+i

Ja. das ist richtig. Durch Einsetzen kannst Du es ja prüfen.



> Für [mm]\wurzel[3]{i}[/mm] = [mm]|\wurzel[3]{i}|= \wurzel(1)[/mm]

Du hast jetzt den Betrag von [mm] \wurzel[3]{i} [/mm] berechnet.

> [mm]tan\Phi[/mm] = [mm]1

Wie kommst Du auf diesen Tangens? Ich verstehe das nicht.


Ich würde erstmal die Polarform von i berechnen, in die Exponentialform umschreiben, und diese dann "hoch ein Drittel" nehmen.

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de