Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:12 Mo 12.01.2009 | Autor: | Lati |
Aufgabe | Stellen Sie z [mm] \in \IC [/mm] als x+ iy , x,y [mm] \in \IR [/mm] dar.
a) z = (1+i)^2009
b) z = [mm] i^n [/mm] |
Hallo,
zu a):
ich weiß, dass als Lösung sowas wie 1,71*10^302 + 1,71*10^302i herauskommen muss, hab allerdings keine Ahnung wie ich da drauf kommen soll.
Ich zum Beispiel hab einfach mal ausgerechnet was denn (1+i)^(2....9) ist und es lässt sich eine gewisse Regelmäßigkeit erkennen aber das kann doch nicht der richtige Lösungsweg sein.
Vielleicht helfen euch aber meine Lösungen ja:
also für n=2: (0+2i)
n=3: (-2+2i)
n=4: (-4+0i)
n=5: (-4-4i)
n=6: (0-8i)
n=7: (8-8i)
n=8: (16+0i)
n=9: (16+16i)
also fällt für die ungeraden Zahlen doch auf, dass x und y immer gleich sind nur manchmal das Vorzeichen variiert, was ja schließlich auch für 2009 der Fall sein sollte. Und es könnte sein, dass x,y Zweierpotenzen sind,also 2^1004.
Das stimmt soweit, aber ohne Taschenrechner komm ich da nicht wirklich drauf. Habt ihr mir da einen Tipp?
zu b):
Hier weiß ich gar nicht, was man hier umwandeln soll.
ich muss nämlich danach noch den Betrag berechnen.Muss ich dann hier eine Fallunterscheidung machen?
Vielen Dank für eure Hilfe!
Viele Grüße
|
|
|
|
Hallo Lati!
Berechne hier mal die ersten Werte für [mm] $i^n$ [/mm] mit [mm] $i^0$ [/mm] , [mm] $i^1$ [/mm] , [mm] $i^2$ [/mm] , [mm] $i^3$ [/mm] , [mm] $i^4$ [/mm] , [mm] $i^5$ [/mm] und [mm] $i^6$ [/mm] .
Was fällt Dir auf?
Gruß vom
Roadrunner
|
|
|
|
|
Hallo Lati!
Rechne $i+1$ in die Exponentialform [mm] $r*e^{\varphi*i}$ [/mm] bzw. trigonometrische Form [mm] $r*\left[\cos(\varphi)+i*\sin(\varphi)\right]$ [/mm] um.
Anschließend die Moivre-Formel verwenden.
Gruß vom
Roadrunner
|
|
|
|