Komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:59 Di 06.09.2005 | Autor: | mr_di |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hi,
leider habe ich da ein Problem mit zwei Aufgaben:
Es sind folgende komplexe Zahlen vorgegeben. Man soll jetzt den Betrag und die konjugiert-komplexe Zahl berechnen. Wie man die konjugiert-komplexe Zahl normal angiebt ist mir klar, aber wie muss ich das machen, wenn ich erst eine Division habe?
Meine Aufgaben sehen folgendermaßen aus:
[mm]z_2 := 5e^{-2 \cdot j}[/mm]
[mm]z_3 := {1+j \over e^{- \pi \cdot j}}[/mm]
jetzt frage ich mich, wie ich genau vorgehe. Bei der ersten Aufgabe würde ich selbst sagen, daß der Betrag ja schon ausgerechnet ist, denn der ist doch 5, oder? und die konjugiert-komplexe Zahl dazu ist:
[mm]\overline {z_2} := 5e^{2 \cdot j}[/mm]
nur bei der anderen Aufgabe hake ich fest. Muß ich jetzt erst alles komplett umformen? Weil die Darstellungen sind ja unterschiedlich. Wie mache ich das dann am schlauesten? Oder kann ich für die konjugiert-komplexe Zahl auch einfach durch die einzelnen Zahlen berechnen? Dann würde mir nur der Betrag fehlen.
Wenn das geht, würde ich die konjugiert-komplexe Zahl ja so versuchen:
[mm]\overline {z_3} := {1-j \over e^{\pi \cdot j}}[/mm]
Eine zusätzliche Frage hätte ich noch, die wahrscheinlich lächerlich ist, aber irgendwie fehlt mir wohl der Weitblick. Warum ist [mm]3 \cdot (cos {\pi \over 4} + j \cdot sin {\pi \over 4}) = 3 \cdot ({1 \over \sqrt{2}} + j \cdot {1 \over \sqrt{2}})[/mm]? Ich verstehe den Zusammenhang nicht so ganz.
Ich hoffe, daß mir jemand mal meine Aufgabe als Beispiel vorrechnen kann, denn dann wäre ich schonmal weiter. Vor allem ist wichtig, daß ich versuchen muß ohne Taschenrechner zu rechnen.
Danke.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:11 Mi 07.09.2005 | Autor: | Loddar |
Hallo mr_di!
> [mm]z_2 := 5e^{-2 \cdot j}[/mm]
> [mm]z_3 := {1+j \over e^{- \pi \cdot j}}[/mm]
>
> jetzt frage ich mich, wie ich genau vorgehe. Bei der ersten
> Aufgabe würde ich selbst sagen, daß der Betrag ja schon
> ausgerechnet ist, denn der ist doch 5, oder? und die
> konjugiert-komplexe Zahl dazu ist:
>
> [mm]\overline {z_2} := 5e^{2 \cdot j}[/mm]
> nur bei der anderen Aufgabe hake ich fest. Muß ich jetzt
> erst alles komplett umformen?
Schreibe doch mal den Nenner um gemäß: [mm] $e^{\varphi*j} [/mm] \ = \ [mm] \cos(\varphi) [/mm] + [mm] j*\sin(\varphi)$
[/mm]
Damit ergibt sich doch: [mm] $e^{-\pi*j} [/mm] \ = \ [mm] \cos(-\pi) [/mm] + [mm] j*\sin(-\pi) [/mm] \ = \ -1 + j*0 \ = \ -1$
Damit dürfte dann die weitere Berechnung für [mm] $z_3$ [/mm] ja kein größeres Problem mehr sein, oder?
> Warum ist [mm]3 \cdot (cos {\pi \over 4} + j \cdot sin {\pi \over 4}) = 3 \cdot ({1 \over \sqrt{2}} + j \cdot {1 \over \sqrt{2}})[/mm]?
> Ich verstehe den Zusammenhang nicht so ganz.
Hier wurden schlicht und ergreifend die Funktionswerte für [mm] $\cos$ [/mm] bzw. [mm] $\sin$ [/mm] ausgerechnet.
Es gilt ja: [mm] $\cos\left(\bruch{\pi}{4}\right) [/mm] \ = \ [mm] \cos(45°) [/mm] \ = \ [mm] \sin\left(\bruch{\pi}{4}\right) [/mm] \ = \ [mm] \sin(45°) [/mm] \ = \ [mm] \bruch{1}{2}\wurzel{2} [/mm] \ = \ [mm] \bruch{1}{\wurzel{2}}$
[/mm]
Gruß
Loddar
|
|
|
|