www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Komplexe Zahlen -Drehstreckung
Komplexe Zahlen -Drehstreckung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen -Drehstreckung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:50 So 28.10.2007
Autor: babsbabs

Aufgabe
Man bestimme rechnerisch und graphisch Summe und Produkt der komplexen Zahlen z1=4+5i und [mm] z2=[2,-\bruch{\pi}{4}] [/mm]


Hallo!

Kann mir jemand erklären wie ich genau die Drehstreckung graphisch darstelle  (für die Multiplikation). Den Rest habe ich schon gelöst!

Muss ich r1 und r2 multiplizieren und den Vektor um 45 Grad gegen den Uhrzeigersinn drehen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Komplexe Zahlen -Drehstreckung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:34 Mo 29.10.2007
Autor: MatthiasKr

Hallo Barbara,
> Man bestimme rechnerisch und graphisch Summe und Produkt
> der komplexen Zahlen z1=4+5i und [mm]z2=[2,-\bruch{\pi}{4}][/mm]
>  
>
> Hallo!
>  
> Kann mir jemand erklären wie ich genau die Drehstreckung
> graphisch darstelle  (für die Multiplikation). Den Rest
> habe ich schon gelöst!
>  
> Muss ich r1 und r2 multiplizieren und den Vektor um 45 Grad
> gegen den Uhrzeigersinn drehen?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt

wenn du eine komplexe zahl $z=x+yi$ hast und dir diese in der komplexen ebene markierst, kannst du diese zahl auf verschiedene weisen beschreiben. Am beliebtesten sind diese 2:

i) du gehst vom ursprung x einheiten entlang der reelen achse und dann y einheiten nach oben/unten (kartesische koordinaten)

ii) verbinde jetzt den punkt z mit dem ursprung. man kann also auch vom ursprung direkt nach z gehen, wenn man den betrag $|z|$ und den richtigen winkel [mm] $\phi$ [/mm] weiss, der zwischen reeler achse und verbindungslinie liegt (polarkoordinaten). in diesen koordinaten kann man schreiben

[mm] $z=r\cdot e^{i\phi}$ [/mm]

hast du deine zwei zahlen in polarkoordinaten gegeben [mm] ($z_i=r_i\cdot e^{i\phi_i}$), [/mm] ist die multiplikation besonders einfach: dann ist

[mm] $z_1\cdot z_2=r_1 r_2 e^{i(\phi_1+\phi_2)}$ [/mm]

das heisst also, du musst die betraege [mm] $r_i$ [/mm] multiplizieren und die winkel addieren. Auf deine beiden konkreten zahlen anwenden musst du das aber schon selber... ;-)

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de