www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen Berechnung
Komplexe Zahlen Berechnung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen Berechnung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:03 Mi 11.11.2009
Autor: bonzai0710

Aufgabe
Berechnen sie realteil,Imaginärteil und Betrag von z Element C sowie [mm] z^2 [/mm] und [mm] |z|^2 [/mm]

[mm] \bruch{(1-i)}{(1-2i)} [/mm] *z = [mm] \bruch{2+2i}{(1+3i)} [/mm]


so ich hab einfahc gerechnet und mit (1-2i) multipliziert. Anschließen mit (1-i) dividiert. So damit steht z alleine links.

Den bruch hab ich mit (1+i)*(1-3i) erweitert. Dann hab ich als ergebnis [mm] \bruch{(i+2)}{5} [/mm]

imaginärteil ist 1/5 realteil 2/5

Jetzt [mm] z^2 [/mm] bilden. Ich hab gesagt [mm] z^2 [/mm] = [mm] a^2+b^2 [/mm] und gesagt das ist 5/25. Muss ich bei [mm] z^2 [/mm] bei der berechnung i auch mit reinziehen oder nicht???

der Betrag von z ist Wurzel aus [mm] a^2+b^2. [/mm] ergebnis 1/5 * wurzel aus 5.

Als nächstes Betrag quadrien und ergebnis ist 5/25.

Da dies meine 1. aufgabe in den Komplexxen zahlen ist bin ich mir sehr sehr unschlüssig was ich da mache und ob ich das machen darf. Ich habs halt einfach mal versucht und würde gern von einem erfahren menschen wissen ob das stimmt oder ob ich totalen mist gebaut habe.

lg
christoph

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Komplexe Zahlen Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Mi 11.11.2009
Autor: fred97


> Berechnen sie realteil,Imaginärteil und Betrag von z
> Element C sowie [mm]z^2[/mm] und [mm]|z|^2[/mm]
>  
> [mm]\bruch{(1-i)}{(1-2i)}[/mm] *z = [mm]\bruch{2+2i}{(1+3i)}[/mm]
>  
>
> so ich hab einfahc gerechnet und mit (1-2i) multipliziert.
> Anschließen mit (1-i) dividiert. So damit steht z alleine
> links.
>  
> Den bruch hab ich mit (1+i)*(1-3i) erweitert. Dann hab ich
> als ergebnis [mm]\bruch{(i+2)}{5}[/mm]

Das hab ich nicht nachgerechnet

>  
> imaginärteil ist 1/5 realteil 2/5
>  
> Jetzt [mm]z^2[/mm] bilden. Ich hab gesagt [mm]z^2[/mm] = [mm]a^2+b^2[/mm]


Unfug ! ist z =a+ib, so ist [mm] z^2 [/mm] = [mm] a^2+2iab +(ib)^2 [/mm] = [mm] a^2+2iab-b^2 [/mm]


FRED


> und gesagt
> das ist 5/25. Muss ich bei [mm]z^2[/mm] bei der berechnung i auch
> mit reinziehen oder nicht???
>  
> der Betrag von z ist Wurzel aus [mm]a^2+b^2.[/mm] ergebnis 1/5 *
> wurzel aus 5.
>  
> Als nächstes Betrag quadrien und ergebnis ist 5/25.
>  
> Da dies meine 1. aufgabe in den Komplexxen zahlen ist bin
> ich mir sehr sehr unschlüssig was ich da mache und ob ich
> das machen darf. Ich habs halt einfach mal versucht und
> würde gern von einem erfahren menschen wissen ob das
> stimmt oder ob ich totalen mist gebaut habe.
>  
> lg
>  christoph
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
Komplexe Zahlen Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Mi 11.11.2009
Autor: Herby

Hallo,

> Berechnen sie realteil,Imaginärteil und Betrag von z
> Element C sowie [mm]z^2[/mm] und [mm]|z|^2[/mm]
>  
> [mm]\bruch{(1-i)}{(1-2i)}[/mm] *z = [mm]\bruch{2+2i}{(1+3i)}[/mm]
>  
>
> so ich hab einfahc gerechnet und mit (1-2i) multipliziert.
> Anschließen mit (1-i) dividiert. So damit steht z alleine
> links.
>  
> Den bruch hab ich mit (1+i)*(1-3i) erweitert. Dann hab ich
> als ergebnis [mm]\bruch{(i+2)}{5}[/mm]

ich erhalte z=1-i


Lg
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de