www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Komplexe Zahlenfolge
Komplexe Zahlenfolge < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlenfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Mi 28.04.2010
Autor: DasDogma

Aufgabe
Gegeben seien die Zahlenfolgen [mm] \{z_{n} \} [/mm] mit [mm] z_{n}=\bruch{1+i}{n^2} [/mm] und [mm] \{w_{n} \} [/mm] mit [mm] w_{n}=e^{in\bruch{\pi}{4}} [/mm].

Welche der Zahlenfolgen ist konvergent? Begründen Sie Ihre Antowort. Bestimmen Sie gegebenenfalls den Grenzwert.

Hallo mit einander,

wir haben jetzt in der Mathe-Vorlesung mit dem Thema Funktionentheorie begonnen. Folgen waren noch nie so mein Ding, deshalb hoffe ich, dass ihr meine Ergebnisse bestätigen oder mir halt helfen könntet, wenn ich falsch liegen sollte.

Die erste Folge habe ich in Real- und Imaginärteil zerlegt und davon den Grenzwert per Limes bestimmt:

[mm]\limes_{n\rightarrow\infty} \bruch{1}{n^2}=0[/mm]

Dies gilt ja in beiden Fällen.

Die zweite Folge habe ich zunächst folgendermaßen zerlegt:

[mm] w_{n}=e^{in\bruch{\pi}{4}} = cos(n\bruch{\pi}{4})+isin(n\bruch{\pi}{4})[/mm]

Dieser Ausdruck sagt mir dann, dass diese Folge nicht konvergent ist, sondern sich der Wert für [mm] n\to\infty[/mm] immer wieder wiederholen wird, aufgrund der Eigenschaften des Sinus und des Kosinus.

Sind meine Überlegungen richtig?

Es gibt ja auch noch die Herangehensweise mit

[mm]\limes_{n\rightarrow\infty} |z_{n}-z_{0}|=0[/mm]

Mein Problem dabei ist, dass ich nicht ganz verstehe was ich da zu tun hab, weil ich kann ja auch nicht für die erste Folge [mm]n=0[/mm] setzen.

Ich hoffe Ihr könnt mir bei beiden Fragen helfen. Schon einmal danke im Vorraus.

Beste Grüße
DasDogma

        
Bezug
Komplexe Zahlenfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Mi 28.04.2010
Autor: schachuzipus

Hallo DasDogma,

> Gegeben seien die Zahlenfolgen [mm]\{z_{n} \}[/mm] mit
> [mm]z_{n}=\bruch{1+i}{n^2}[/mm] und [mm]\{w_{n} \}[/mm] mit
> [mm]w_{n}=e^{in\bruch{\pi}{4}} [/mm].
>  
> Welche der Zahlenfolgen ist konvergent? Begründen Sie Ihre
> Antowort. Bestimmen Sie gegebenenfalls den Grenzwert.
>  Hallo mit einander,
>  
> wir haben jetzt in der Mathe-Vorlesung mit dem Thema
> Funktionentheorie begonnen. Folgen waren noch nie so mein
> Ding, deshalb hoffe ich, dass ihr meine Ergebnisse
> bestätigen oder mir halt helfen könntet, wenn ich falsch
> liegen sollte.
>  
> Die erste Folge habe ich in Real- und Imaginärteil zerlegt
> und davon den Grenzwert per Limes bestimmt:
>  
> [mm]\limes_{n\rightarrow\infty} \bruch{1}{n^2}=0[/mm] [ok]
>  
> Dies gilt ja in beiden Fällen.
>  
> Die zweite Folge habe ich zunächst folgendermaßen
> zerlegt:
>  
> [mm]w_{n}=e^{in\bruch{\pi}{4}} = cos(n\bruch{\pi}{4})+isin(n\bruch{\pi}{4})[/mm] [ok]
>  
> Dieser Ausdruck sagt mir dann, dass diese Folge nicht
> konvergent ist, sondern sich der Wert für [mm]n\to\infty[/mm] immer
> wieder wiederholen wird, aufgrund der Eigenschaften des
> Sinus und des Kosinus.

Das stimmt verbal blumig, aber kannst du das etwas "sauberer" begründen?


> Sind meine Überlegungen richtig?
>  
> Es gibt ja auch noch die Herangehensweise mit
>  
> [mm]\limes_{n\rightarrow\infty} |z_{n}-z_{0}|=0[/mm]
>  
> Mein Problem dabei ist, dass ich nicht ganz verstehe was
> ich da zu tun hab, weil ich kann ja auch nicht für die
> erste Folge [mm]n=0[/mm] setzen.

Na, die Vermutung im 1.Fall ist: GW=0

Also [mm] $\left|\frac{1+i}{n^2}-0\right|=\frac{\sqrt{2}}{n^2}$ [/mm]

Und das kriegst du doch beliebig klein ...

>  
> Ich hoffe Ihr könnt mir bei beiden Fragen helfen. Schon
> einmal danke im Vorraus.

Bitte nur ein "r"

>  
> Beste Grüße
>  DasDogma


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de