Komplexe zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:54 Di 29.04.2008 | Autor: | pete369 |
Aufgabe | a) Welche komplexe zahl z ist lösung der gleichung zj=z+1? Können Sie vorab eine geometrische Begründung dafür geben,dass diese Zahl auf Halbgeraden z(t)=-t(1+j),t [mm] \ge [/mm] 0 ,liegen muss?
b)Sei folgende Kurve C gegeben : z(t)= e^-t+jt ,t [mm] \ge [/mm] 0. Welche länge hat die gesamte Bahn dieser Kurve? Skizzieren Sie auch diese Bahn (sehr grob , seien sie lieber quantitativ ungenau,um das wesentliche Verhalten zu zeigen).Starten Sie jedoch mit korrekter Richtung -ziehen Sie dazu z´(0) heran.
|
Hallo
Ich weiss das ich neu hier bin jedoch hoffe ich das ihr mir trotzdem bei dieser Aufgabe weiterhelft. Ich habe versuch die aufgae zu lösen jedoch fand ich das was dabei rausgekommen ist nicht so produktiv. Deshalb scheue ich mich dieses rein zu stellen :) . Ich hoffe ihr nehm mir das nicht so übel und helft mir trotzdem bei der aufgabe.
danke im vorraus
mfg
euer pete
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:56 Di 29.04.2008 | Autor: | pelzig |
> a) Welche komplexe zahl z ist lösung der gleichung zj=z+1?
> Können Sie vorab eine geometrische Begründung dafür
> geben,dass diese Zahl auf Halbgeraden z(t)=-t(1+j),t [mm]\ge[/mm] 0
> ,liegen muss?
Ich nehme an $j$ ist bei dir die "imaginäre Einheit" (meistens schreibt man dafür ja $i$).
Der Ansatz wäre, dass du $z$ schreibst als [mm] $a+b\cdot [/mm] j$ mit [mm] $a,b\in\IR$ [/mm] (dass das immer geht, und dass diese Darstellung eindeutig ist weißt du hoffentlich).
dann sieht die obige Gleichung wie folgt aus [mm] $(a+b\cdot j)j=a+b\cdot [/mm] j+1$...
Zur geometrischen Interpretation: Stell dir die komplexen Zahlen als Ebene vor. Multiplikation mit $j$ bedeutet du drehst den Punkt um $90°$ um 0. Addition von 1 bedeutet Verschiebung um 1 nach rechts.
> b)Sei folgende Kurve C gegeben : z(t)= e^-t+jt ,t [mm]\ge[/mm] 0.
> Welche länge hat die gesamte Bahn dieser Kurve? Skizzieren
> Sie auch diese Bahn (sehr grob , seien sie lieber
> quantitativ ungenau,um das wesentliche Verhalten zu
> zeigen).Starten Sie jedoch mit korrekter Richtung -ziehen
> Sie dazu z´(0) heran.
Offensichtlich ist $z(0)=1$, das heißt diese Kurve "beginnt" im Punkt 1+0j. Doch was dann?
$z(t)$ lässt sich schreiben als [mm] $e^{-t}\cdot e^{tj}$. [/mm] Der Ausdruck [mm] $e^{-t}$ [/mm] ist reell (da [mm] $t\in\IR$) [/mm] und geht für [mm] $t\to\infty$ [/mm] von 1 monoton gegen 0.
Jetzt multiplizierst du das mit [mm] $e^{jt}$, [/mm] das heißt du drehst noch um den Winkel $t$ (im Bogenmaß). D.h. insgesammt müsste die Kurve aussehen wie eine Spirale, die im Punkt 1 beginnt und sich dann immer engerwerdend und gegen den uhrzeigersinn um die 0 windet, diese aber niemals erreicht.
Wie man die Länge der Bahn berechnet weiß ich nicht. Schätze dafür braucht man Wegintegrale oder so.
Gruß, Robert
|
|
|
|
|
> a) Welche komplexe zahl z ist lösung der gleichung zj=z+1?
> Können Sie vorab eine geometrische Begründung dafür
> geben,dass diese Zahl auf Halbgeraden z(t)=-t(1+j),t [mm]\ge[/mm] 0
> ,liegen muss?
>
> b)Sei folgende Kurve C gegeben : z(t)= e^-t+jt ,t [mm]\ge[/mm] 0.
> Welche länge hat die gesamte Bahn dieser Kurve? Skizzieren
> Sie auch diese Bahn (sehr grob , seien sie lieber
> quantitativ ungenau,um das wesentliche Verhalten zu
> zeigen).Starten Sie jedoch mit korrekter Richtung -ziehen
> Sie dazu z´(0) heran.
Hallo pete,
bei b) handelt es sich um ein ziemlich "nettes" Kurvenintegral.
Als Integral dargestellt hat man
L = [mm] \integral_{0}^{\infty}{|dz(t)|} [/mm] = [mm] \integral_{0}^{\infty}{|z'(t)|*dt}
[/mm]
Da die Ableitungen im Komplexen ganz analog wie im Reellen gehen, ist
dies recht elementar zu berechnen. Man muss an einer Stelle noch anwenden,
dass [mm] |z_1*z_2|=|z_1|*|z_2| [/mm] .
viel Erfolg ! (das Ergebnis ist übrigens ein sehr einfaches...)
al-Chwarizmi
|
|
|
|