www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe zahlen
Komplexe zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 Mi 24.03.2010
Autor: EtechProblem

Aufgabe
Finden Sie, in den KOmplexen Zahlen, alle lösungen für: [mm] z^4-125z=0 [/mm]



Also ich habe für das erste z1=0 rausbekommen ist ja eig. klar wenn man halt z aus klammert.Ich komm danach nicht viel weiter. Mein ansatz wäre halt:
[mm] z^3-125=0 [/mm]
[mm] z^3=125 [/mm]  dritte wurzel ziehen:
z2/3/4= 5
ich vermute das es doch cniht so einfach ist:). wäre ganz nett wenn mir jemand helfen könnte

MfG

        
Bezug
Komplexe zahlen: Moivre-Formel
Status: (Antwort) fertig Status 
Datum: 19:18 Mi 24.03.2010
Autor: Loddar

Hallo EtechProblem!


Du hast Recht: sooo einfach ist es dann wirklich nicht. Schließlich hat in [mm] $\IC$ [/mm] die Gleichung [mm] $z^3 [/mm] \ = \ 125$ auch wirklich 3 Lösungen.

Verwende hier am besten die MBMoivre-Formel.


Gruß
Loddar


Bezug
                
Bezug
Komplexe zahlen: moivre-formel
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:04 Mi 24.03.2010
Autor: EtechProblem

Aufgabe
Finden Sie, in den KOmplexen Zahlen, alle lösungen für: $ [mm] z^4-125z=0 [/mm] $

Danke erstmal für dein guten Tipp. Allerdings verstehe ich  nicht so ganz wie ich sie einsetzen soll. Also ich dachte mir ok ich müsste ja [mm] z^3-125=0 [/mm] in r= [mm] \wurzel{125^2+1^2}. [/mm] Ich weis allerdings nciht was ich mit dem winkel und so weiter anfangen soll.

Bezug
                        
Bezug
Komplexe zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:22 Mi 24.03.2010
Autor: EtechProblem

ich habe gerade gemerkt das zu der moivre formel ein beispiel gibt. Ich hatte das übersehen. Meine 2. Frage hat sich damit geklärt ich danke dir für deine Hilfe.

MfG Etechproblem

Bezug
                
Bezug
Komplexe zahlen: moivre-formel
Status: (Frage) beantwortet Status 
Datum: 20:36 Mi 24.03.2010
Autor: EtechProblem

bei dem beispiel von der moivre-formel kann das sein das da ein fehler ist? da ist nämlich k=(n-1) definiert und bei z1 steht für k= 0 aber sollte das nciht (3-1)=2 sein? sonst und z2 und 3 das selbe und es steht immer [mm] \wurzel[3]{1} [/mm]

Bezug
                        
Bezug
Komplexe zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Mi 24.03.2010
Autor: abakus


> bei dem beispiel von der moivre-formel kann das sein das da
> ein fehler ist? da ist nämlich k=(n-1) definiert und bei
> z1 steht für k= 0 aber sollte das nciht (3-1)=2 sein?
> sonst und z2 und 3 das selbe und es steht immer
> [mm]\wurzel[3]{1}[/mm]  

Junge, sprich mal im ganzen Satz.

Ich weiß nicht, auf welche / wo stehende Formel/Definition du dich beziehst.
In der Moivre-Formel geht es NICHT um  k=(n-1), sondern um ALLE Werte, die k annehmen kann.
Das sind erst mal prinzipiell alle natürlichen Zahlen, allerdings wiederholen sich die möglichen Lösungen immer wieder.
Alle voneinander verschiedenen Lösungen bekommst du, wenn du für k der Reihe nach die natürlichen Zahlen von 0 bis n-1 verwendest.
Überzeuge dich insbesondere davon, dass k=0 und k=n jeweils auf die gleiche Lösung führen.
Gruß Abakus



Bezug
                                
Bezug
Komplexe zahlen: moivre-formel
Status: (Frage) beantwortet Status 
Datum: 21:10 Mi 24.03.2010
Autor: EtechProblem

Es tut mir leid, dass ich unvollständige Sätze verfasst habe. Angenommen es gäbe z1 bis z4 bei dem Beispie(Rechnungen)l zu der Moivre-formel. Dann wäre für z1 k=0 zugeordnet, z2 k=1, z3 k=2 z4 k=3 oder? Nur um sicher zu gehen das ich es 100% verstanden habe. Den rest der Funktion verstehe ich ja aber dieses k leider nciht ganz.

Bezug
                                        
Bezug
Komplexe zahlen: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 22:38 Mi 24.03.2010
Autor: Loddar

Hallo EtechProblem!


> Dann wäre für z1 k=0 zugeordnet, z2 k=1, z3 k=2 z4 k=3 oder?

[daumenhoch] Genau ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de