www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Komplexes Integral
Komplexes Integral < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 Fr 05.06.2015
Autor: Trikolon

Aufgabe
Berechne für a [mm] \in \IC* [/mm] mit |a| ungleich 1
a) [mm] \integral_{\partial D_1(0)}{\bruch{1}{(z-a)(z-1/a)} dz} [/mm]
b) [mm] \integral_{0}^{2 \pi}{\bruch{1}{1-2acos(t)+a^2} dt} [/mm]

Hallo, hier mal meine Überlegungen (bisher haben wir nur die Cauchy-Integralformel zur Verfügung):

zu a) Ich denke, man muss eine Fallunterscheidung machen mit |a|>1 und |a|<1

Die beiden Nullstellen des Nenners sind ja [mm] z_1=a [/mm] und [mm] z_2=1/a [/mm] , die sind auf jeden Fall ungleich n.V.

Fall 1: sei |a|>1, dann ist [mm] z_1 \not\in D_1(0) [/mm] und [mm] z_2 \in D_1(0). [/mm] Die Fkt f: [mm] \IC [/mm] \ [mm] {z_1} [/mm] --> [mm] \IC [/mm] , z --> [mm] \bruch{1}{z-z_1} [/mm] ist holomorph. Also folgt mit der CIF: [mm] \integral_{\partial D_1(0)}{\bruch{1}{(z-a)(z-1/a)} dz}= [/mm] 2 [mm] \pi [/mm] i [mm] f(1/a)=\bruch{2 \pi i a}{1-a^2} [/mm]
Fall 2 würde ja analog gehen.

zu b) Hier habe ich versucht a) zu verwenden:

[mm] \integral_{0}^{2 \pi}{\bruch{1}{1-2acos(t)+a^2} dt} [/mm] = [mm] \bruch{-1}{ai}\integral_{0}^{2 \pi}{\bruch{iexp(it)}{(exp(it)-a)(exp(it)-1/a)} dt} [/mm] =  [mm] \bruch{-1}{ai}\integral_{\partial D_1(0)}{\bruch{1}{(z-a)(z-1/a)} dz} [/mm]
= [mm] \bruch{-2 \pi}{1-a^2} [/mm]

Muss ich hier dann ebenfalls eine Fallunterscheidung machen?

Ist das sonst soweit ok oder zumindest was Brauchbares dabei?


        
Bezug
Komplexes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Fr 05.06.2015
Autor: MathePower

Hallo Trikolon,

> Berechne für a [mm]\in \IC*[/mm] mit |a| ungleich 1
>  a) [mm]\integral_{\partial D_1(0)}{\bruch{1}{(z-a)(z-1/a)} dz}[/mm]
>  
> b) [mm]\integral_{0}^{2 \pi}{\bruch{1}{1-2acos(t)+a^2} dt}[/mm]
>  
> Hallo, hier mal meine Überlegungen (bisher haben wir nur
> die Cauchy-Integralformel zur Verfügung):
>  
> zu a) Ich denke, man muss eine Fallunterscheidung machen
> mit |a|>1 und |a|<1
>  
> Die beiden Nullstellen des Nenners sind ja [mm]z_1=a[/mm] und
> [mm]z_2=1/a[/mm] , die sind auf jeden Fall ungleich n.V.
>  


Nach Voraussetzung ist nur [mm]\vmat{a} \not= 1, \ a \in \IC[/mm]

Damit sind auch die Beträge der Nullstellen ungleich 1.


> Fall 1: sei |a|>1, dann ist [mm]z_1 \not\in D_1(0)[/mm] und [mm]z_2 \in D_1(0).[/mm]
> Die Fkt f: [mm]\IC[/mm] \ [mm]{z_1}[/mm] --> [mm]\IC[/mm] , z --> [mm]\bruch{1}{z-z_1}[/mm] ist
> holomorph. Also folgt mit der CIF: [mm]\integral_{\partial D_1(0)}{\bruch{1}{(z-a)(z-1/a)} dz}=[/mm]
> 2 [mm]\pi[/mm] i [mm]f(1/a)=\bruch{2 \pi i a}{1-a^2}[/mm]
>  Fall 2 würde ja
> analog gehen.

>


[ok]

  

> zu b) Hier habe ich versucht a) zu verwenden:
>  
> [mm]\integral_{0}^{2 \pi}{\bruch{1}{1-2acos(t)+a^2} dt}[/mm] =
> [mm]\bruch{-1}{ai}\integral_{0}^{2 \pi}{\bruch{iexp(it)}{(exp(it)-a)(exp(it)-1/a)} dt}[/mm]
> =  [mm]\bruch{-1}{ai}\integral_{\partial D_1(0)}{\bruch{1}{(z-a)(z-1/a)} dz}[/mm]
>  
> = [mm]\bruch{-2 \pi}{1-a^2}[/mm]
>  
> Muss ich hier dann ebenfalls eine Fallunterscheidung
> machen?

>


Ja, siehe a)

  

> Ist das sonst soweit ok oder zumindest was Brauchbares
> dabei?

>


Das ist alles ok. [ok]


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de