www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Komplexes Polynom
Komplexes Polynom < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexes Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Di 04.03.2008
Autor: GorkyPark

Hallo zusammen!

Ich soll eine Behauptung zeigen und ich möchte wissen ob meine Annahme - die ich für den Beweis brauche - stimmt.

Ich habe ein komplexes Polynom P(z) und eine Folge [mm] {v}_{n} [/mm] im Bildbereich P(U), U Menge. Ich möchte jetzt zeigen, dass es eine Folge [mm] {u}_{n} [/mm] gibt s.d. [mm] P(u_{i})=v_{i} [/mm] für alle i=1,2,...  (Es spielt hier keine Rolle, ob die [mm] u_{i} [/mm] in U sind oder nicht)

Im reellen Fall würde ich so argumentieren: Polynome sind stetig und sind surjektiv, d.h. bilden auf [mm] -\infty [/mm] bis [mm] \infty [/mm] ab. Daraus ergibt sich, dass ich eine geeignete Folge [mm] {u}_{n} [/mm] finde, so dass meine Bildfolge genau [mm] {v}_{n} [/mm] ist.

Meine Frage ist jetzt, ob der gleiche Beweis über Stetigkeit und Surjektivität auch für die komplexen Zahlen gilt.


Vielen Dank für eure Mühen!

Euer Gorks

        
Bezug
Komplexes Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:29 Di 04.03.2008
Autor: GorkyPark

Okay, mir ist ein Licht aufgegangen. Habe mir das Leben wieder unnötig schwer gemacht...

(Surjektivität ist natürlich schon bei geraden Polynomen Quatsch!)



Bezug
        
Bezug
Komplexes Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Di 04.03.2008
Autor: Somebody


> Hallo zusammen!
>  
> Ich soll eine Behauptung zeigen und ich möchte wissen ob
> meine Annahme - die ich für den Beweis brauche - stimmt.
>  
> Ich habe ein komplexes Polynom P(z) und eine Folge [mm]{v}_{n}[/mm]
> im Bildbereich P(U), U Menge. Ich möchte jetzt zeigen, dass
> es eine Folge [mm]{u}_{n}[/mm] gibt s.d. [mm]P(u_{i})=v_{i}[/mm] für alle
> i=1,2,...  (Es spielt hier keine Rolle, ob die [mm]u_{i}[/mm] in U
> sind oder nicht)

Aber gewiss doch, aber ja doch: dies spielt sehr wohl eine Rolle. Siehe unten.

>  
> Im reellen Fall würde ich so argumentieren: Polynome sind
> stetig und sind surjektiv,

Dass dies nicht richtig ist, hast Du bereits selbst bemerkt.

> d.h. bilden auf [mm]-\infty[/mm] bis
> [mm]\infty[/mm] ab. Daraus ergibt sich, dass ich eine geeignete
> Folge [mm]{u}_{n}[/mm] finde, so dass meine Bildfolge genau [mm]{v}_{n}[/mm]
> ist.

Wenn die [mm] $v_i\in [/mm] P(U)$ sind, dann gibt es, aufgrund der Definition von $P(U)$, für jedes [mm] $v_i$ [/mm] mindestens ein [mm] $u_i\in [/mm] U$ mit [mm] $P(u_i)=v_i$. [/mm] D.h. eine Folge [mm] $(u_i)_{i\in\IN}$ [/mm] aus $U$ mit [mm] $P(u_i)=v_i$ [/mm] existiert aus einigermassen trivialen Gründen durchaus.

Bezug
                
Bezug
Komplexes Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:45 Mi 05.03.2008
Autor: GorkyPark

Jo danke, das ist mir eben auch danach klar geworden.

Hab' zu weit gesucht.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de