www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algorithmen und Datenstrukturen" - Komplexität von Algos
Komplexität von Algos < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexität von Algos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:46 Fr 09.01.2009
Autor: Phecda

Hi
hab ne aufgabe wo ich nicht mal ansatzweise verstehe was ich machen soll [mm] =\ [/mm]

gegeben ist die rek fkt f:

int f(int a,int b){
    if (a >= b) {
       return g(a);
    } else {
        return f(a,b-1) + f(a+1,b);
    }
}

die frage ist:
berechnen sie die algorithmische komplexität der funktion f. dabei sei n = b-a der komplexitätsparameter.
Überlegen sie eine formel für T(n), die anzahl der additionen bei der berechnung von f(a,b) wobei n = b-a. Dieser aufwand ist abhängig von T(g), der anzahl der additionen in der berechnung von g. T(g) sei dabei unabhängig vom eingabeparameter von g, also eine konstante.

kann mir jmd erklären was ich machen soll?
hab schon 2 stunden skripte gelesen aber blick einfach nicht durch... sry
danke :)
lg    

        
Bezug
Komplexität von Algos: Antwort
Status: (Antwort) fertig Status 
Datum: 09:43 Mo 12.01.2009
Autor: bazzzty


> Hi
>  hab ne aufgabe wo ich nicht mal ansatzweise verstehe was
> ich machen soll
>  
> gegeben ist die rek fkt f:
>  
> int f(int a,int b){
>      if (a >= b) {
>         return g(a);
>      } else {
>          return f(a,b-1) + f(a+1,b);
>      }
>  }
>  
> die frage ist:
>  berechnen sie die algorithmische komplexität der funktion
> f. dabei sei n = b-a der komplexitätsparameter.
>  Überlegen sie eine formel für T(n), die anzahl der
> additionen bei der berechnung von f(a,b) wobei n = b-a.
> Dieser aufwand ist abhängig von T(g), der anzahl der
> additionen in der berechnung von g. T(g) sei dabei
> unabhängig vom eingabeparameter von g, also eine
> konstante.
>  
> kann mir jmd erklären was ich machen soll?
>  hab schon 2 stunden skripte gelesen aber blick einfach
> nicht durch... sry

Dass spricht ja nur für Dich, dass Du schon Skripte gelesen hast, kein Grund, sich zu entschuldigen.

Ich verstehe die Aufgabe so:

Wenn man die Funktion mit Parametern $a,b$ aufruft, dann kann man bei der Berechnung die Additionen (Subtraktionen zählen als Additionen) zählen und die als $T(a,b)$ bezeichnen. Das entspricht der Laufzeit, wenn man annimmt, dass nur Additionen Zeit kosten.

Einen wichtigen Schritt hat man schon mit der Aufgabe vorweggenommen: $T(a,b)$ hängt nicht wirklich von beiden Parametern ab, sondern ist nur von der Differenz abhängig. Es reicht also, nur $T(n)$ zu betrachten.

Die Laufzeit kann man dann auch wieder rekursiv aufschreiben:

[mm]T(n)=\begin{cases}c\cdot T(n-1)&:n>0\\ T(g)&:n\leq 0\end{cases}[/mm]

Das $c$ kannst Du Dir selbst überlegen, denke ich!
Man kann das dann auch geschlossen darstellen; ich weiß aber nicht, ob das gefragt ist.

>  danke :)
>  lg    


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de