www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Komplizierter Erwartungswert
Komplizierter Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplizierter Erwartungswert: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:29 Mo 24.11.2008
Autor: qwest

Aufgabe
Da die Aufgabenstellung von mir stammt, kann ich hier nichts "exakt wiedergeben". Aber die Aufgabe ist wie folgt:
In einem Markt exisitieren zwei banken mit unterschiedlichen Informationsständen. Die Inside bank i kann zwischen guten (S) und schlechten (F) Kreditnehmern unterscheiden.
Die zweite bank (outside bank o ) kann dies nicht.
Die Gleichgewichtslösung für diesen Wettbewerb unter asymmetrischer Information ist ein gemischtes Gleichgewicht. Welches wie folgt aussieht:

Strategie der inside bank:
Den F-Firmen (schlechte Kreditnehmer) wird der Zins [mm] r_{F} [/mm] angeboten

Den S-Firmen wird ein Angebot zwischen [mm] [r_{p}, r_{F}] [/mm] gemacht.
Wobei [mm] r_{p} [/mm] der faire Zins ist, wenn nichts über den Kreditnehmer bekannt wäre (also weder ob er S noch ob er F ist).
Das Angebot für die guten Kreditnehmer hat die Dichtefunktion:

[mm] h^{S}(r)=(p(S)*(1+r_{p})-(1+\overline{r}))/(p(S)*(1+r)-(1+\overline{r}))^{2} [/mm]

Erläuterung der Variablen:
[mm] (1+\overline{r}) [/mm] entspricht den Refinanzierungskosten der Bank
p(S) ist die Erfolgswahrscheinlichkeit der guten Kreditnehmer, aus welcher sich dann auch der Zins [mm] r_{p} [/mm] ableitet (dies ist der Zins mit dem die inside bank bei den guten kreditnehmern einen erwartetetn Gewinn von Null hätte)
[mm] r_{F} [/mm] wäre dementsprechend der faire Zins für schlechte Kreditnehmer und [mm] r_{p} [/mm] der Zins der verlangt wird , wenn keine Information vorliegt

Die outside bank:
bietet mit einer Wahrscheinlichkeit von 1-p(S) den Zins  [mm] r_{F} [/mm]
und mit der Wahrscheinlichkeit p(S) liegt das Angebot zwischen [mm] [r_{p}, r_{F}) [/mm]

Die Dichtefunktion hierfür ist:

[mm] h_{o}(r)=p(S)+h^{S}(r) [/mm]

Nachdem das Gleichgewicht beschrieben wurde ist meine Frage, welchen Zinssatz ein guter bzw. ein schlechter Kreditnehmer erwarten könnte.
Im Gleichgewicht wechelt eine F-Firma immer von i zu o wenn das Angebot besser ist. D.h. Die schlechten wecheln mit einer Wahrscheinlichkeit von p(S).
Der erwartetet Zins für F-Firmen müsste dann:

[mm] (1-p(S))*r_{F}+p(S)*[Erwartungswert [/mm] von [mm] h_{o}(r)) [/mm]

entsprechen.

S-Firmen wechseln mit einer Wahrscheinlichkeit von

[mm] \integral_{r_{p}}^{r_{F}}{(1-H^{S}(r))*h_{o}(r) dr} [/mm]

Nun endlich die Frage:

Wie hoch ist der erwartete Zins für eine S-Firma?

Mein Ansatz wäre bisher zu sagen, ich muss die "Wechselwahrscheinlichkeit" der S-Firmen irgendwie ausrechnen (1. Problem) und anschließend anwenden analog zum obigen Ansatz bei den F_Firmen:
Nach dem Motto: Wechelwahrscheinlichkeit mal Erwartungswert outside-Angebot) plus (1-Wechelwahrscheinlichkeit) mal Erwartungswert Inside-Angebot  (2. Problem: welches ich evtl. lösen könnte wenn das erste gelöst wurde...)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Komplizierter Erwartungswert: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Do 25.12.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de