www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Komponentendarstellung
Komponentendarstellung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komponentendarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Fr 26.12.2008
Autor: Pompeius

Aufgabe
Gegeben seien die Vektoren:  [mm] \vec{w}=\vektor{1 \\ 2 \\ 3} [/mm] ; [mm] \vec{a}= \vektor{2 \\ 1 \\ 2} [/mm] und die Ebene E:x1+x2+2x3=0
Der Vektor [mm] \vec{w} [/mm] soll aus zwei Komponenten [mm] \vec{u} [/mm] und [mm] \vec{v} [/mm] zusammengesetzt sein, wobei eine der Komponenten orthogonal zu [mm] \vec{a} [/mm] ist und die andere orthogonal zu der Ebene E.

Hey Leute !

Ein orthogonaler Vektor zu E wäre ja der Normalenvektor [mm] \vektor{1 \\ 1 \\ 2} [/mm] aus der parameterfreien Darstellung von E.
Also könnte eine Komponente ja z.B  [mm] \delta\vektor{1 \\ 1 \\ 2} [/mm] sein.
Ein orthogonaler Vektor zu [mm] \vec{a} [/mm] muss die Gleichung [mm] \vektor{x \\ y \\ z}*\vektor{2 \\ 1 \\ 2}=0 [/mm] erfüllen, weil das skalare Produkt ja 0 sein muss ..Gesucht wäre dann eine Lösung für 2x+y+2z=0 und eine mögliche Lösung wäre z.b [mm] \vektor{1 \\ 0 \\ -1}. [/mm]
Die zweite Komponente könnte also [mm] \lambda\vektor{1 \\ 0 \\ -1} [/mm] sein ..
Es gilt ja: [mm] \vec{w}=\vec{u}+\vec{v} [/mm]
Und meine Idee ist jetzt: [mm] \vec{w}=\lambda\vektor{1 \\ 0 \\ -1}+\delta\vektor{1 \\ 1 \\ 2} [/mm] ..
Nur komme ich dabei ja auf ein überbestimmtes lineares Gleichungssystem mit drei Gleichungen und zwei Unbekannten !
Wäre nett wenn mir mal jemand helfen könnte ! Also danke schon mal !!

        
Bezug
Komponentendarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:03 Fr 26.12.2008
Autor: heusspower


> Gegeben seien die Vektoren:  [mm]\vec{w}=\vektor{1 \\ 2 \\ 3}[/mm] ;
> [mm]\vec{a}= \vektor{2 \\ 1 \\ 2}[/mm] und die Ebene E:x1+x2+2x3=0
>  Der Vektor [mm]\vec{w}[/mm] soll aus zwei Komponenten [mm]\vec{u}[/mm] und
> [mm]\vec{v}[/mm] zusammengesetzt sein, wobei eine der Komponenten
> orthogonal zu [mm]\vec{a}[/mm] ist und die andere orthogonal zu der
> Ebene E.
>  Hey Leute !
>  
> Ein orthogonaler Vektor zu E wäre ja der Normalenvektor
> [mm]\vektor{1 \\ 1 \\ 2}[/mm] aus der parameterfreien Darstellung
> von E.
>  Also könnte eine Komponente ja z.B  [mm]\delta\vektor{1 \\ 1 \\ 2}[/mm]
> sein.
> Ein orthogonaler Vektor zu [mm]\vec{a}[/mm] muss die Gleichung
> [mm]\vektor{x \\ y \\ z}*\vektor{2 \\ 1 \\ 2}=0[/mm] erfüllen, weil
> das skalare Produkt ja 0 sein muss ..Gesucht wäre dann eine
> Lösung für 2x+y+2z=0 und eine mögliche Lösung wäre z.b
> [mm]\vektor{1 \\ 0 \\ -1}.[/mm]

Eine mögliche Lösung darfst du hier wohl nicht auswählen.

Ich glaube, dass richtig ist, die Gleichungen

[mm] \vektor{x \\ y \\ z} [/mm] * [mm] \vektor{2 \\ 1 \\ 2}=0 [/mm]
und
[mm]\delta\vektor{1 \\ 1 \\ 2}[/mm]  + [mm] \lambda\vektor{x \\ y \\ z} [/mm] = [mm] \vektor{1 \\ 2 \\ 3} [/mm]

zu betrachten.

Wähle mal als mögliche Lösung nicht für x,y,z passende Größen sondern wähle nur für x eine Größe, z.B. x=1, also:


[mm] \vektor{1 \\ y \\ z} [/mm] * [mm] \vektor{2 \\ 1 \\ 2}=0 [/mm]
und
[mm]\delta\vektor{1 \\ 1 \\ 2}[/mm]  + [mm] \lambda\vektor{1 \\ y \\ z} [/mm] = [mm] \vektor{1 \\ 2 \\ 3} [/mm]


Dann hast du vier Gleichungen mit vier Variablen, das müsste lösbar sein

Angaben aber ohne Gewähr!




Bezug
        
Bezug
Komponentendarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Fr 26.12.2008
Autor: Al-Chwarizmi

hallo Pompeius,


es geht auch etwas einfacher ohne die zusätzliche
Variable [mm] \lambda: [/mm]

Sei [mm] $\vec{u}=\vektor{x\\y\\z}$ [/mm] und  [mm] $\vec{u}+\vec{v}=\vec{w}$ [/mm]

Wegen [mm] \vec{u}*\vec{a}=0 [/mm] muss gelten

      (1)  $\ 2x+y+2z=0$

Der Vektor [mm] $\vec{v}=\vec{w}-\vec{u}$ [/mm] soll zu E normal sein,
also gilt

      (2)  $\ [mm] \vec{v}=\vec{w}-\vec{u}=\vektor{1-x\\2-y\\3-z}=\delta*\vektor{1\\1\\2}$ [/mm]


In den Gleichungen (1) und (2) stecken insgesamt
4 lineare Gleichungen für die 4 Unbekannten x,y,z und [mm] \delta [/mm] .


LG   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de