Kompositionsreihe,Diedergruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:10 Fr 23.10.2015 | Autor: | sissile |
Aufgabe | Finden Sie eine Kompositionsreihe für die Diedergruppe [mm] D_n [/mm] (mit n ≥ 3) |
Hallo,
[mm] D_n [/mm] := [mm] <\alpha, \beta> [/mm] mit [mm] \alpha=(12...n), \beta= \pmat {1&2&3&..&n-1&n\\1&n&n-1&..&3&2}
[/mm]
Es gibt eine Kompositionsreihe da [mm] |D_n|=2n [/mm] endlich ist.
[mm] D_n \rhd [/mm] < [mm] \alpha> [/mm] da [mm] [D_n: <\alpha>]=2
[/mm]
[mm] <\alpha> \cong \mathbb{Z}_n [/mm] = [mm] \mathbb{Z}/ [/mm] n [mm] \mathbb{Z}
[/mm]
n hat Primfaktorzerlegung [mm] n=p_1*..*p_m
[/mm]
[mm] \mathbb{Z}_n [/mm] = [mm] \mathbb{Z}/n\mathbb{Z}\rhd p_1\mathbb{Z}/n\mathbb{Z} \rhd p_1 p_2 \mathbb{Z}/n\mathbb{Z}\rhd...\rhd p_1..p_{m-1}/n\mathbb{Z} \rhd p_1.. p_m \mathbb{Z}/n\mathbb{Z} \cong \{0\} [/mm] ist eine Kompositionsreihe. (Das habe ich schon nachgerechnet)
Ich brauche da aber nun zwischen den Termen [mm] <\alpha> [/mm] und [mm] Z_n [/mm] eine Isomorphie. Deshalb bin ich verunsicher wie ich das anschreibe.
[mm] D_n \rhd <\alpha> \rhd p_1\mathbb{Z}/n\mathbb{Z} \rhd p_1 p_2 \mathbb{Z}/n\mathbb{Z}\rhd...\rhd p_1..p_{m-1}/n\mathbb{Z} \rhd p_1.. p_m \mathbb{Z}/n\mathbb{Z} \cong \{0\}
[/mm]
wäre doch falsch, da dass ja keine Untergruppen von [mm] D_n [/mm] sind, sondern nur isomorph zu Untergruppen von [mm] D_n [/mm] sind.Und ich weiß ja gar nicht ob [mm] D_n [/mm] überhaupt Untergruppen von den ganzen Ordnungen hat. Ich bin da gerade verunsichert.
LG,
sissi
|
|
|
|
> Finden Sie eine Kompositionsreihe für die Diedergruppe [mm]D_n[/mm]
> (mit n ≥ 3)
> Hallo,
> [mm]D_n[/mm] := [mm]<\alpha, \beta>[/mm] mit [mm]\alpha=(12...n), \beta= \pmat {1&2&3&..&n-1&n\\1&n&n-1&..&3&2}[/mm]
>
> Es gibt eine Kompositionsreihe da [mm]|D_n|=2n[/mm] endlich ist.
> [mm]D_n \rhd[/mm] < [mm]\alpha>[/mm] da [mm][D_n: <\alpha>]=2[/mm]
> [mm]<\alpha> \cong \mathbb{Z}_n[/mm]
> = [mm]\mathbb{Z}/[/mm] n [mm]\mathbb{Z}[/mm]
> n hat Primfaktorzerlegung [mm]n=p_1*..*p_m[/mm]
> [mm]\mathbb{Z}_n[/mm] = [mm]\mathbb{Z}/n\mathbb{Z}\rhd p_1\mathbb{Z}/n\mathbb{Z} \rhd p_1 p_2 \mathbb{Z}/n\mathbb{Z}\rhd...\rhd p_1..p_{m-1}/n\mathbb{Z} \rhd p_1.. p_m \mathbb{Z}/n\mathbb{Z} \cong \{0\}[/mm]
> ist eine Kompositionsreihe. (Das habe ich schon
> nachgerechnet)
>
>
> Ich brauche da aber nun zwischen den Termen [mm]<\alpha>[/mm] und
> [mm]Z_n[/mm] eine Isomorphie. Deshalb bin ich verunsicher wie ich
> das anschreibe.
> [mm]D_n \rhd <\alpha> \rhd p_1\mathbb{Z}/n\mathbb{Z} \rhd p_1 p_2 \mathbb{Z}/n\mathbb{Z}\rhd...\rhd p_1..p_{m-1}/n\mathbb{Z} \rhd p_1.. p_m \mathbb{Z}/n\mathbb{Z} \cong \{0\}[/mm]
>
> wäre doch falsch, da dass ja keine Untergruppen von [mm]D_n[/mm]
> sind, sondern nur isomorph zu Untergruppen von [mm]D_n[/mm] sind.Und
> ich weiß ja gar nicht ob [mm]D_n[/mm] überhaupt Untergruppen von
> den ganzen Ordnungen hat. Ich bin da gerade verunsichert.
>
> LG,
> sissi
Ich bin mir nicht sicher, ob ich verstehe, wo dein Problem ist. Wenn du eine zyklische Gruppe [mm] $\langle\alpha\rangle$ [/mm] der Ordnung $n$ hast, und $p$ ein Primfaktor von $n$ ist, dann ist [mm] $\langle\alpha^p\rangle$ [/mm] eine Untergruppe und der Quotient ist einfach (zyklisch von primer Ordnung). Ist es das, was du möchtest? Wenn $q$ der nächste Primfaktor ist, betrachte [mm] $\langle\alpha^{pq}\rangle\trianglelefteq\langle\alpha^p\rangle$ [/mm] und so fort.
Übrigens ist [mm] $D_n=\IZ/n\rtimes \IZ/2$, [/mm] wobei [mm] $\IZ/2$ [/mm] durch Invertierung wirkt. Das kann man sich schön geometrisch klarmachen.
Liebe Grüße,
UniversellesObjekt
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:30 Fr 23.10.2015 | Autor: | sissile |
Ja du hast meine Frage richtig verstanden und so konnte ich mein Problem lösen! Danke.
|
|
|
|