www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Kon-, Divergenz
Kon-, Divergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kon-, Divergenz: Frage
Status: (Frage) beantwortet Status 
Datum: 17:26 Mi 26.01.2005
Autor: BastiUnger

Habe bei dieser Aufgabe schon verschiedene Versuche unternommen, doch steh ich immer vor dem gleichen Problem.

Aufgabe:
[mm] \summe_{n=1}^{\infty} \bruch{n+4}{n^{2}-3n+1} [/mm]

Bisher versucht:
Majorantenkriterium - hierbei weiß ich nicht was ich mit dem minus machen soll...?
Qutiontenkriterium - führt zu [mm] \bruch{n^{3}+2n^{2}-14n+5}{n^{3}+3n^{2}+5n-4} [/mm]

Es wäre echt super, wenn ich noch ne Antwort bekommen könnte, da ich am fr. klausur schreibe und mich diese aufgabe echt fuchst. Danke

MfG
bastian unger

        
Bezug
Kon-, Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 Mi 26.01.2005
Autor: andreas

hallo bastian

was sich hier anbietet ist die divergenz mittels minoranten-kriterium zu zeigen. z.b. gilt [m] \bruch{n+4}{n^{2}-3n+1} > \frac{1}{n} [/m] für [m] n \geq 3 [/m] und [m] \sum_{n=1}^\infty \frac{1}{n} [/m] ist ja (bekantermaßen?) divergent!

grüße
andreas

Bezug
                
Bezug
Kon-, Divergenz: wie zeige ich das?
Status: (Frage) beantwortet Status 
Datum: 10:58 Do 27.01.2005
Autor: Shaguar

Moin, mich interressiert auch die Frage.

und wie zeige ich genau, dass

[m]\bruch{n+4}{n^{2}-3n+1} > \frac{1}{n}[/m] für [m]n \geq 3[/m]?

Reicht zu sagen, dass dann der Zähler sowieso größer als 1 ist und man ja auch wirklich sieht, dass der Nenner größer ist weil [mm] n^{2}-3n+1 [/mm] > n für n [mm] \geq [/mm] 3.

Oder müsste ich das mit Induktion zeigen was ja nicht schwer wäre aber zeitaufwendig in einer Klausur(zb. morgen)?

Danke für die Antwort.

Grüsse Shaguar


Bezug
                        
Bezug
Kon-, Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:19 Do 27.01.2005
Autor: FriedrichLaher

Hallo, Shaguar

für n > 3 gilt [mm] $n^2 [/mm] - 3n + 1 > 0$ denn [mm] $n^2 [/mm] - 3n + 1 = (n - [mm] 3/2)^2 [/mm] - 5/4)$
somit
darf für diesen fall die Ungleichung mit [mm] $n*(n^2 [/mm] - 3n +1)$ multipliziert werden
ohne daß sich auf der einen oder anderen Seite das Vorzeichen ändert
und das ">" nicht mehr stimmen würde.
also $n*(n+4) > [mm] n^2 [/mm] - 3n + 1 [mm] \,\gdw\, [/mm] 4n > -3n + 1$
womit
die Richtigkeit der Ausgangsungleichung bestätigt ist

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de