www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Konditionszahlen Agorithmus
Konditionszahlen Agorithmus < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konditionszahlen Agorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 Sa 02.02.2008
Autor: nm123

Aufgabe
Ein Algorithmus zur Berechnung der Grösse z sei gegeben durch
z =f(x,y) = x*y + sin(x)   ; Eingabewerte sind x und y.
Berechnen Sie die Konditionszahlen in allgemeiner Form und speziell für x=pi/2, y=1.

Hallo Mathemitglieder,

an genannter Aufgabe beisse ich mir ein bisschen die Zähne auf, und vermute dass es gar nichts so schwieriges ist. Laut Lösung sollen beide Konditionszahlen den Wert 0.61 haben, aber egal wie ich rechne komme ich nicht auf diesen Wert.

Mein Vorgehen bisher :

1) [mm] \bruch{df}{dx} [/mm] = cos(x) + y     und   [mm] \bruch{df}{dy} [/mm]  = x
[das sollte ja stimmen ?!]

2.1) relative konditionszahl für x :  
  k= [mm] \bruch{df}{dx} [/mm]  * [mm] \bruch{x}{f(x,y)} [/mm]
    = (cos(x)+y ) *  [mm] \bruch{x}{(sin(x)+x*y)} [/mm]  = 1,965

2.2) entsprechend für y :  
  k= [mm] \bruch{df}{dy} [/mm] * [mm] \bruch{y}{f(x,y)} [/mm]
    = x * [mm] \bruch{y}{(sin(x)+x*y)} [/mm] = 0,983.  

Wer kann mir erklären was ich dabei falsch mache ?

Die Formel k=f'(x,y)dx * [mm] \bruch{x}{f(x,y)} [/mm] ist doch korrekt, oder ?
Trotzdem komme ich nicht auf die gewünschte Zah 0.61, warum ?

Bei einer Aufgabe mit nur einem Parameter (z.Bsp. [mm] f(x)=(1-x+x^2)*(1+x)) [/mm] komme ich mit dem o.g. Vorgehen auf die Lösung)

Über eine Hilfe wäre ich so dankbar.
chris

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konditionszahlen Agorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Sa 02.02.2008
Autor: Steffi21

Hallo, vermutlich hast du bei deinem Taschenrechner nicht auf Gradmaß und Bogenmaß geachtet: [mm] \bruch{\pi}{2}\hat=90^{0} [/mm]

[mm] (cos(90^{0})+1)*\bruch{\bruch{\pi}{2}}{sin(90^{0})+\bruch{\pi}{2}*1} [/mm]

[mm] =1*\bruch{\bruch{\pi}{2}}{1+\bruch{\pi}{2}*1} [/mm]

[mm] =\bruch{\bruch{\pi}{2}}{1+\bruch{\pi}{2}} [/mm]

[mm] =\bruch{1,570796...}{2,570796...} [/mm]

=0,611...

ebenso im 2. Teil

Steffi



Bezug
                
Bezug
Konditionszahlen Agorithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:54 So 03.02.2008
Autor: nm123

He Steffi,

wow, spitze. Da wäre ich nie draufgekommen. Hab das nun nachgerechnet - Tatsache, den Sinus muss ich im Gradmass eingeben. Schade dass man solche Dinge immer mehr oder weniger "implizit" wissen muss, in keinem von 5 Hochschulskripten war ein Hinweis darauf.

Darum umso mehr Dank für die superschnelle Antwort und Hilfe !

Bezug
                        
Bezug
Konditionszahlen Agorithmus: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:03 So 03.02.2008
Autor: nm123

Nun habe ich doch noch eine kleine Frage :

Mit "die Konditionszahlen in allgemeiner Form", damit ist doch die Formel an sich gemeint, oder ? Also der Ausdruck [mm] \bruch{x}{f(x)}*f'(x). [/mm]

Oder gibt es da Etwas noch allgemeineres ?

Bezug
                                
Bezug
Konditionszahlen Agorithmus: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 Di 05.02.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de