www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Konditionszahlen Verkettung
Konditionszahlen Verkettung < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konditionszahlen Verkettung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:55 Mi 01.04.2020
Autor: descom

Aufgabe
Es sei eine Funktion [mm] f:\IR\to\IR [/mm] mit [mm] x\in\IR [/mm]
Es bezeichne [mm] k_{f} [/mm] (x) die Kondition dieser Aufgabe.
Beweisen Sie, ist [mm] f:=f_{1}\circf_{2}\circ...\circf_{k} k\in\IN [/mm]
die Verkettung von k differenzierbaren Funktionen [mm] f_{i}:\IR\to\IR [/mm] i=1,..,k und ist [mm] f_{i}(f_{i+1}\circ...\circf_{k}(x)\not=0 [/mm] für i=1,...,k-1 sowie [mm] f_{k}(x)\not=0, [/mm] dann ist:
[mm] k_{f}=k_{f_{k}}(x)\produkt_{i=1}^{k-1}k_{f_{i}}(f_{i+1}\circ...\circf_{k}(x)) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Der Versuch die zu lösen war mittels vollständiger Induktion über k mit Startwert 1, mithilfe der gleich folgenden Gleichungen und der Induktionsannahmen.
Es sei [mm] f(x):=f_{1}\circf_{2}\circ...\circf_{k} f_{*}:= f_{0}(f(x)) [/mm]
Hier sind die verwendeten Gleichungen:

[mm] 1)k_{f_{0}}=\bruch{f(x)}{f_{0}(f(x)))}*\bruch{\partialf_{0}}{\partialx} [/mm]
[mm] 2)k_{f_{*}}=\bruch{x}{f_{*}}*\bruch{\partialf_{*}}{\partialx}(x) [/mm]
[mm] 3)k_{f}=\bruch{x}{f(x)}*\bruch{\partialf}{\partialx}(x) [/mm]

Dann wurde umgeformt und die Identität
[mm] bruch{\partialf_{*}}{\partialx}=bruch{\partialf_{0}}{\partialf}*bruch{\partialf}{\partialx} [/mm]
verwendet.

Der Beweis nach k+1 würde jedoch nur klappen, wenn [mm] k_{f_{*}}=k_{f_{0}}*...*k_{f_{k}} [/mm] gelten würde

Ich schätze dass bei der Wahl der Gleichungen 1 und 2 ein Fehler liegt, dieser ist mir jedoch nicht ersichtlich.
Gleichung 3 Ist die Definition der Konditionszahl für eine Funktion mit einer Variable.
Möglicherweise ist auch die Wahl der vollständigen Induktion als Beweismethode nicht passend.
Ich sehe den Fehler in meinem Ansatz leider nicht und bitte um weiterhilfe.

lg und danke im Voraus

        
Bezug
Konditionszahlen Verkettung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:03 Mi 01.04.2020
Autor: Gonozal_IX

Hiho,

vorab: Du hast eine Vorschaufunktion. Aktuell lässt sich dein Artikel wegen Fehlformatierungen so gut wie nicht lesen. Achte da biste nächste Mal drauf.

Ich übersetze das also mal

Sei $ [mm] f:=f_{1}\circ f_{2} \circ\ldots\circ f_{k}, k\in\IN [/mm] $ mit [mm] $f_i \in C^1(\IR), f_{i}\left((f_{i+1}\circ\ldots\circ f_{k})(x)\right)\not=0 [/mm] $ (das hast du übrigens noch nirgends benutzt) sowie $ [mm] f_{k}(x)\not=0$ [/mm] (das auch nicht)

Zeige:
$ [mm] k_{f}(x) [/mm] = [mm] k_{f_{k}}(x)\produkt_{i=1}^{k-1}k_{f_{i}}\left((f_{i+1}\circ\ldots\circ f_{k})(x)\right) [/mm] $

> Der Versuch die zu lösen war mittels vollständiger Induktion

Nette Idee, hier aber unnötig (wenn auch möglich).
Schreib die rechte Seite doch mal für bspw $k=4$ hin und schau, was dir auffällt.

Letztendlich ist der Beweis ziemlich gerade heraus: Rechte Seite ausschreiben, kürzen, fertig.

Gruß,
Gono.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de