www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Matlab" - Konditionszahlen und GLS
Konditionszahlen und GLS < Matlab < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konditionszahlen und GLS: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:10 Fr 21.07.2006
Autor: Nette20

Aufgabe
a) Es sei u: [mm] \IR \to \IR [/mm] mindestens sechsmal stetig differenzierbar. Für festes t [mm] \in \IR [/mm] zeige man:
u´´´´(t) = [mm] \bruch{u(t+2h) - 4u(t+h)+6u(t)-4u(t-h)+u(t-2h)}{h^{4}} [/mm] + [mm] O(h^{2}) [/mm]

Hierzu kann man die Taylorentwicklungen von u(t [mm] \pm [/mm] h) und u(t  [mm] \pm [/mm] 2h) heranziehen.

Folgendes Randwertproblem soll nun auf zwei verschiedene Weisen diskretisiert werden:
y´´´´ - y = 0, y(0) = y(1) = 1, y'(0) = y'(1) = 0.
Hierzu definieren wir mit einer gegebenen Schrittweite h = 1/n für j=-1,0,1,...,n+1 die Stützstellen [mm] t_{j} [/mm] = jh [mm] \in [/mm] [-h, 1+h] und verfahren folgendermaßen:
1) Zum einen ersetzen wir die vierte Ableitung durch die Differenzenformel aus (a) und erhalten so eine Differenzengleichung für die Näherung [mm] u_{j} [/mm] an [mm] y(t_{j}) [/mm] in [mm] t_{1},...,t_{n-1}. [/mm] Als Randbedingungen wählen wir [mm] u_{0} [/mm] = [mm] u_{n} [/mm] = 1, [mm] u_{1} [/mm] = [mm] u_{-1} [/mm] und [mm] u_{n+1} [/mm] = [mm] u_{n-1}. [/mm]
2) Zum anderen schreiben wir die Differentialgleichung vierter Ordnung als vierdimensionales System erster Ordnung in der Form
Y' = MY mit Y = [mm] (Y^{(1)}, Y^{(2)}, Y^{(3)}, Y^{(4)} )^{T} [/mm] = (y, y', y´´, [mm] y´´´)^{T} [/mm] und den Randwerten [mm] Y^{(1)} [/mm] (0) = [mm] Y^{(1)} [/mm] (1) = 1, [mm] Y^{(2)} [/mm] (0) = [mm] Y^{(2)} [/mm] (1) = 0.
Dieses ersetzen wir (gemäß der impliziten Trapezregel) durch das diskrete Schema [mm] U_{j} [/mm] - [mm] U_{j-1} [/mm] = h/2 [mm] M(U_{j} [/mm] + [mm] U_{j-1}) [/mm] mit den Randbedingungen [mm] U_{0}^{(1)} [/mm] = [mm] U_{n}^{(1)} [/mm] = 1, [mm] U_{0}^{(2)} [/mm] = [mm] U_{n}^{(2)} [/mm] = 0.

b) Für [mm] u_{1},...,u_{n-1} [/mm] und [mm] \vektor{ U_{0}^{(3)} \\ U_{0}^{(4)} }, U_{1},...,U_{n-1}, \vektor{ U_{n}^{(3)} \\ U_{n}^{(4)} } [/mm] stelle man jeweils die entsprechenden GLS auf.

c)Bestimmen Sie jeweils für n= 10,20,40,80 (mit Matlab) die Konditionszahlen der beiden GLS aus (b). Wie verhalten sich die Konditionszahlen? Wie erklären Sie sich, dass das eine System wesentlich besser konditioniert ist als das andere? (hinweis: Verwenden Sie bei Bedarf die MATLAB-Funktion toeplitz und kron zum Aufstellen der Matrizen).

d) Lösen Sie (mit Matlab) für beide Diskretisierungen die GLS und vergleichen Sie mit der exakten Lösung von 1). Stellen Sie den Fehler graphisch dar.

Hallo!
Da zur Lösung von c) und d) die Aufgabenteile a) und b) benötigt werden, habe ich sie mit eingestellt.
Ich kann mit Matlab nicht umgehen und weiß daher nicht, wie ich das Berechnen kann.
Danke für Eure Hilfe.
Nette

        
Bezug
Konditionszahlen und GLS: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 27.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de