www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Konfidenzintervall
Konfidenzintervall < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konfidenzintervall: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:32 Do 26.05.2005
Autor: astwo

Hallo,
Ich stecke mit folgender Aufgabe und würde mich über Hilfe sehr freuen:

"Ein Messinstrument wird für die messung von Diametern (mm) von Stahlaxen verwendet. Studien haben gezeigt, dass Fehler in der Messung unabhängig sind und N(0, $ [mm] 1.2\cdot{}10^{-3}). [/mm] $  
Wieviele von einander unabhängige Messungen von einer Axe müssen gemacht werden um ein 95% Konfidenzintervall für den Diameter, der höchstens [mm] 2.00*10^{-3} [/mm] mm sein darf, zu erhalten?"

Kann mir da jemand einen Weg aufzeigen...?

Vielen Dank und lieben Gruss!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Konfidenzintervall: Antwort
Status: (Antwort) fertig Status 
Datum: 23:32 Fr 27.05.2005
Autor: Brigitte

Hallo astwo!

> "Ein Messinstrument wird für die messung von Diametern (mm)
> von Stahlaxen verwendet. Studien haben gezeigt, dass Fehler
> in der Messung unabhängig sind und N(0, [mm]1.2\cdot{}10^{-3}).[/mm]
>  
> Wieviele von einander unabhängige Messungen von einer Axe
> müssen gemacht werden um ein 95% Konfidenzintervall für den
> Diameter, der höchstens [mm]2.00*10^{-3}[/mm] mm sein darf, zu
> erhalten?"

Leider habe ich keinerlei Vorstellung von Diametern und Stahlaxen. Also kann es sein, dass ich die Aufgabe völlig fehlinterpretiere. Aber ich würde so rangehen, dass das 95%-Konfidenzintervall für den Diameter höchstens die Länge [mm]2.00*10^{-3}[/mm] besitzen sollte (nicht der Diameter selbst, das ergibt in meinen Augen keinen Sinn). Unter den gegebenen Annahmen sollte diese Länge normalverteit sind mit unbekanntem Erwartungswert [mm] $\mu$ [/mm] und derselben Varianz (oder Standardabweichung, je nachdem, was bei euch der zweite Parameter bedeutet) wie der Messfehler. Das Konfidenzintervall für [mm] $\mu$ [/mm] lautet

[mm] $\left[\bar{x}_n-u_{1-\alpha/2}\frac{\sigma}{\sqrt{n}};\bar{x}_n+u_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$, [/mm]

wobei [mm] $\bar{x}_n$ [/mm] das arithmetische Mittel der $n$ Messungen bezeichnet und [mm] $u_{1-\alpha/2}$ [/mm] das [mm] $1-\alpha/2$-Quantil [/mm] der Normalverteilung bezeichnet (hier ist [mm] $\alpha=0.05$). [/mm] Die Länge des Intervalls ist

[mm] $2\cdot u_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}.$ [/mm]

Wir müssen daher die Ungleichung

[mm] $2\cdot u_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\le 2\cdot 10^{-3}$ [/mm]

nach $n$ auflösen, nachdem wir alle bekannten Werte eingesetzt haben. Probier mal ab hier weiter und melde Dich, wenn was unklar ist oder ich die Aufgabe falsch interpretiere.

Viele Grüße
Brigitte



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de