www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Konfigurationsraum
Konfigurationsraum < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konfigurationsraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 Mo 26.09.2016
Autor: Die_Suedkurve

Hallo zusammen,

ich habe eine Frage zum Konfigurationsraum. Dieser ist wie folgt definiert:

[mm] \Gamma [/mm] := [mm] \{ \gamma \subset \IR^d | \forall K \subset \IR^d kompakt: \# (\gamma \cap K) < \infty \}. [/mm]

Behauptung: Jedes [mm] \gamma \in \Gamma [/mm] ist leer, endlich oder abzählbar unendlich.

Meine Frage: Die ersten beiden Möglichkeiten sind klar. Aber wenn [mm] \gamma [/mm] unendlich viele Punkte hat, wieso müssen es dann abzählbar viele sein?

Anmerkung: Ich betrachte den euklidischen [mm] \IR^d. [/mm]

Bin für Hilfe dankbar.

Grüße

        
Bezug
Konfigurationsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Mo 26.09.2016
Autor: fred97


> Hallo zusammen,
>  
> ich habe eine Frage zum Konfigurationsraum. Dieser ist wie
> folgt definiert:
>  
> [mm]\Gamma[/mm] := [mm]\{ \gamma \subset \IR^d | \forall K \subset \IR^d kompakt: \# (\gamma \cap K) < \infty \}.[/mm]
>  
> Behauptung: Jedes [mm]\gamma \in \Gamma[/mm] ist leer, endlich oder
> abzählbar unendlich.
>  
> Meine Frage: Die ersten beiden Möglichkeiten sind klar.
> Aber wenn [mm]\gamma[/mm] unendlich viele Punkte hat, wieso müssen
> es dann abzählbar viele sein?

sei [mm] K_n [/mm] die kompakte Kugel um 0 mit Radius n. Dann ist [mm] \gamma [/mm] gerade die Vereinigung der Mengen [mm] \gamma \cap K_n. [/mm]

fred


>  
> Anmerkung: Ich betrachte den euklidischen [mm]\IR^d.[/mm]
>  
> Bin für Hilfe dankbar.
>  
> Grüße


Bezug
                
Bezug
Konfigurationsraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Mo 26.09.2016
Autor: Die_Suedkurve


> sei [mm]K_n[/mm] die kompakte Kugel um 0 mit Radius n. Dann ist
> [mm]\gamma[/mm] gerade die Vereinigung der Mengen [mm]\gamma \cap K_n.[/mm]
>  
> fred

Jedes [mm] \gamma \cap K_n [/mm] hat dann ja nach Definition endlich viele Punkte.
Argumentierst du dann so, dass eine abzählbare Vereinigung von Mengen mit endlich vielen Punkten wieder abzählbar sein muss?

Bezug
                        
Bezug
Konfigurationsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 22:54 Mo 26.09.2016
Autor: tobit09

Hallo Die_Suedkurve!


> > sei [mm]K_n[/mm] die kompakte Kugel um 0 mit Radius n. Dann ist
> > [mm]\gamma[/mm] gerade die Vereinigung der Mengen [mm]\gamma \cap K_n.[/mm]

> Jedes [mm]\gamma \cap K_n[/mm] hat dann ja nach Definition endlich
> viele Punkte.
>  Argumentierst du dann so, dass eine abzählbare
> Vereinigung von Mengen mit endlich vielen Punkten wieder
> abzählbar sein muss?

Genau.


Viele Grüße
Tobias

Bezug
                                
Bezug
Konfigurationsraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:08 Mo 26.09.2016
Autor: Die_Suedkurve

Okay, dann weiß ich Bescheid. Danke euch beiden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de