www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Kongruenzen
Kongruenzen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kongruenzen: Beweis
Status: (Frage) beantwortet Status 
Datum: 21:16 Di 24.06.2008
Autor: jura

Aufgabe
Beweisen Sie, dass für a,b,c [mm] \in \IZ [/mm] und n,m [mm] \in \IN_0 [/mm] gilt:
a) [mm] a\equiv [/mm] b(m)   [mm] \Rightarrow ac\equiv [/mm] bc(cm)
b) [mm] a\equiv [/mm] b(m) [mm] \wedge [/mm]  n |m [mm] \wedge [/mm] n>0  [mm] \Rightarrow [/mm] a [mm] \equiv [/mm] b(n)

vielleicht könnte mir jemand für den beweis ersteinmal verdeutlichen, was diese sätze bedeuten- und anschließend einige hilfestellungen für die beweisführung geben?!

besten dank, tschau.

        
Bezug
Kongruenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 Mi 25.06.2008
Autor: steffenhst

Hallo,

zu 1.: a [mm] \equiv [/mm] b modm bedeutet ja nichts anderes als das die Differenz von a-b durch m geteilt wird, also m|(a-b). Also bedeutet dein erster Satz, dass wenn a-b durch m geteilt wird, dann auch (ac-bc) durch mc. Ich denke der Beweis liegt damit auf der Hand. Bei Aufgabe 2. sollte es dann auch nicht so schwer werden.

Grüße, Steffen



Bezug
                
Bezug
Kongruenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:36 Do 26.06.2008
Autor: jura

dankeschön!
bei a) schreibe ich also einfach nur:
[mm] a\equiv [/mm] b(m)  [mm] \gdw [/mm]  m| (a-b) [mm] \gdw [/mm] c*m|c (a-b) [mm] \gdw [/mm] cm| ac-bc [mm] \gdw ac\equiv [/mm] bc (cm).
mathematisch korrekt?

b) und hier bin ich mir unsicher, wie ich z.b das n>0 mitführen muss:
[mm] a\equiv [/mm] b(m) [mm] \wedge [/mm] n/m [mm] \wedge [/mm] n>0 [mm] \Rightarrow [/mm] m/(a-b) [mm] \wedge [/mm]  n/m [mm] \Rightarrow [/mm] n/m [mm] \wedge [/mm]  m/ (a-b) [mm] \Rightarrow [/mm] (wegen transitivität) n/(a-b) für n>0 [mm] \Rightarrow a\equiv [/mm] b(n).

kann ich das so schreiben?
danke und gruß!

Bezug
                        
Bezug
Kongruenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Do 26.06.2008
Autor: steffenhst

Hallo,

>  bei a) schreibe ich also einfach nur:
> [mm]a\equiv[/mm] b(m)  [mm]\gdw[/mm]  m| (a-b) [mm]\gdw[/mm] c*m|c (a-b) [mm]\gdw[/mm] cm|
> ac-bc [mm]\gdw ac\equiv[/mm] bc (cm).

nicht ganz: m|(a-b) <-> es gibt ein v [mm] \in \IZ [/mm] mit mv = a - b, beide Seiten mit c multipliziert: mvc = c(a-b) = ac-bc <-> ac [mm] \equiv [/mm] bc modmc

> b) und hier bin ich mir unsicher, wie ich z.b das n>0
> mitführen muss:
>  [mm]a\equiv[/mm] b(m) [mm]\wedge[/mm] n/m [mm]\wedge[/mm] n>0 [mm]\Rightarrow[/mm] m/(a-b)
> [mm]\wedge[/mm]  n/m [mm]\Rightarrow[/mm] n/m [mm]\wedge[/mm]  m/ (a-b) [mm]\Rightarrow[/mm]
> (wegen transitivität) n/(a-b) für n>0 [mm]\Rightarrow a\equiv[/mm]
> b(n).

Ja das geht so. n > 0 sichert dir zu, dass du nicht durch null dividierst.
Grüße, Steffen


Bezug
                                
Bezug
Kongruenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:39 Do 26.06.2008
Autor: jura

geht klar, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de