www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Kongruenzen
Kongruenzen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kongruenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:23 Mo 06.10.2008
Autor: Irmchen

Aufgabe
Finden Sie ein [mm] x \in \mathbb Z [/mm] das die Kongruenzen

[mm] x \equiv 10 \mod 27 [/mm]
[mm] x \equiv 2 \mod 25 [/mm]
[mm] x \equiv 3 \mod 8 [/mm]

erfüllt.

Guten Abend alle zusammen!

Zu dieser Aufgabe habe ich mehrere Lösungen, aber unter anderem auch diese nun folgende, welche ich nicht nachvollziehen kann. Ich verstehe dort nicht, wie man vorgegangen ist und vorallen warum so.
Ich hoffe, dass mir jemand dies kurz erläutern kann!

Lösung :

[mm] x \equiv 10 \mod 27 = n_1 [/mm]
[mm] x \equiv 2 \mod 25 = n_2 [/mm]
[mm] x \equiv 3 \mod 8 = n_3 [/mm]

( Warum dieser Ansatz ? )
[mm] \rightarrow [/mm] Finde r,s mit [mm] r \cdot n_1 + s \cdot n_2 = 1 [/mm]  


[mm] 24 = 1 \cdot 25 + 2 [/mm]
[mm] 25 = 12 \cdot 2 + 1 [/mm]
[mm] 2 = 2 \cdot 1 + 0 \rightarrow 1 = ggT ( 27,25 ) [/mm]
[mm] 1 = 25 - 12\cdot 2 = 25 - 12 (27 - 25 ) = 13 \cdot 25 - 12 \cdot 27 [/mm]
[mm] \rightarrow r = -12 , s = 13 [/mm]

[mm] \rightarrow x \equiv y \mod n_1 \cdot n_2 [/mm] mit [mm] y = r \cdot n_1 \cdot e_2 + s \cdot n_2 \cdot e_1 = ... = 2602 [/mm]
( Was ist denn das für ein Ansatz ? )

wobei [mm] e_1 = 10, e_2 = 2, e_3 = 3 [/mm]  und [mm] n_1 \cdot n_2 = 625 [/mm] ist.

(Handel es sich hier in den folgenden Zeilen um den Euklidischen Algorithmus ? )
[mm] x \equiv 3 \mod 8 [/mm]
    [mm] \rightarrow \ 625 = 84 \cdot 8 + 3 [/mm]
                       [mm] 8 = 2 \cdot 3 + 2 [/mm]
                       [mm] 3 = 1 \cdot 2 + 1 [/mm]
                       [mm] 2 = 1 \cdot 2 + 0 \ \rightarrow ggT ( 675 , 8 ) = 1[/mm]              

[mm] 1 = 3 - 2 = 3 - ( 8 - 2\cdot 3 ) = 3 \cdot 3 - 8 = 3 ( 375 - 84 \cdot 8 ) - 8 = 3 \cdot 685 - 253 \cdot 8 [/mm]

[mm] \rightarrow x = -253 \cdot 8 \cdot y + 3 \cdot 3 \cdot 675 [/mm]
[mm] = - 5260373 [/mm] erfüllt die Kondruenzen !

Vielen Dank im voraus!

Viele Grüße
Irmchen

        
Bezug
Kongruenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:35 Mo 06.10.2008
Autor: rainerS

Hallo Irmchen!

Ich habe die Rechnung nicht im Einzelnen verfolgt, aber das sieht mir wie die Anwendung des []Chinesischen Restsatzes aus.

Viele Grüße
   Rainer

Bezug
                
Bezug
Kongruenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:13 Do 09.10.2008
Autor: Irmchen

Hallo!

Das Problem ist eher, dass wir zu diesem Zeitpunkt den chinesischen Restsatz noch nicht in der Vorlesung besprochen haben... ich werde es versuchen damit nachzuvollziehen.. Danke!

Viele Grüße
Irmchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de