www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Kongruenzen vereinfachen?
Kongruenzen vereinfachen? < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kongruenzen vereinfachen?: unklarheit
Status: (Frage) beantwortet Status 
Datum: 21:01 Mi 07.08.2013
Autor: yasadfadsfdas

Aufgabe
x = 7 mod 9
x = 4 mod 12
x = 5 mod 11



Hallo,

Die Aufgabe oben:

x = 7 mod 9
x = 4 mod 12
x = 5 mod 11

(mithilfe chin. Restsatz soll des Zeug berechnet werden).

Kann man so einfach nicht berechnen:

Das Problem liegt bei

x = 7 mod 9
x = 4 mod 12

Da diese beiden nicht teilerfremd sind, muss ich etwas damit anstellen, verstehe aber absolut nicht was. Ich weiß nur dass

x = ? mod 396 sein muss, da ich es im rechner eingegeben habe.

396 ist allerdings nicht 9 *12 *11, sondern 9*4*11. D.h. mit dem:
x = 4 mod 12
muss etwas geschehen und ich weiß nicht genau was. Zerlegen habe ich versucht allerdings nicht hinbekommen. Da 12 nicht mit primzahlen dargestellt werden kann...?

gruß

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Kongruenzen vereinfachen?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:51 Mi 07.08.2013
Autor: abakus


> x = 7 mod 9
> x = 4 mod 12
> x = 5 mod 11

>
>

> Hallo,

>

> Die Aufgabe oben:

>

> x = 7 mod 9
> x = 4 mod 12
> x = 5 mod 11

>

> (mithilfe chin. Restsatz soll des Zeug berechnet werden).

>

> Kann man so einfach nicht berechnen:

>

> Das Problem liegt bei

>

> x = 7 mod 9
> x = 4 mod 12

Hallo,
es gilt 7 [mm] $\equiv$ [/mm] 16  [mm] $\equiv$ [/mm] 25  [mm] $\equiv$ [/mm] 34 ... mod 9
und 
4  [mm] $\equiv$ [/mm]  16  [mm] $\equiv$ [/mm]  28 ... mod 12.
Du musst also gar nicht lange suchen, um gleiche Reste bei verschiedenen Modulen zu finden. 
Es gilt sowohl  x [mm] $\equiv$ 16 [/mm] mod 9
als auch 
x  [mm] $\equiv$ [/mm] 16 mod 12.
Glücklicherweise passt die 16 auch auf
5 [mm] $\equiv$ [/mm] 16 mod 11.
Wenn letzteres nicht der Fall gewesen wäre, hätte man statt 16 in den ersten beiden Kongruenzen auch 
48 oder 84 oder 120 oder ... (von 16 aus in 36-er Schritten vorwärts) nehmen können, und zwar so lange, bis man auch für die dritte Kongruenz ein passendes x findet.
Gruß Abakus

>

> Da diese beiden nicht teilerfremd sind, muss ich etwas
> damit anstellen, verstehe aber absolut nicht was. Ich weiß
> nur dass

>

> x = ? mod 396 sein muss, da ich es im rechner eingegeben
> habe.

>

> 396 ist allerdings nicht 9 *12 *11, sondern 9*4*11. D.h.
> mit dem:

PS: 396 ist das kgV von 9, 12 und 11.

> x = 4 mod 12
> muss etwas geschehen und ich weiß nicht genau was.
> Zerlegen habe ich versucht allerdings nicht hinbekommen. Da
> 12 nicht mit primzahlen dargestellt werden kann...?

>

> gruß

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de