www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Konjugation im Differential
Konjugation im Differential < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konjugation im Differential: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 So 11.01.2009
Autor: rastamanana

Aufgabe
Integration über den komplexen Einheitskreis

Ich habe diese Frage in keinem anderen Forum gepostet.

Hallo miteinander,

ich halte demnächst einen Vortrag und hätte diesbezüglich mal eine kleine Frage.

Stimmt die folgende Gleichung?

[mm] \integral_{|z|=1}{f(z) \bruch{dz}{z}}=-\integral_{|z|=1}{f(z) \bruch{\overline{dz}}{\overline{z}}} [/mm]

Dabei seien keine Beschränkungen an die Funktion f: [mm] \IC\to\IC [/mm] gestellt, d.h. f sei beliebig oft stetig differenzierbar.

Ich hab mir zwar schon meine Gedanken dazu gemacht, komme aber auf keinen Beweis (welcher mir allerdings auch nicht so wichtig ist, da ich bloß wissen möchte, ob die obige Gleichung stimmt).

Hier meine Überlegungen:

Auf "Physikerweise" betrachtet ist das Skalarprodukt [mm] \overline{(\bruch{1}{z})} \cdot d\overline{z} [/mm] gleich dem Skalarprodukt [mm] \bruch{1}{z} \cdot [/mm] dz (betrachtet man dz als Vektor der Änderung von z).
Ich integriere die Funktion ja dann immernoch auf demselben Bereich, bloß, dass die Umlaufrichtung sich ändert. Und wenn mich nicht alles täuscht, hatten wir in der komplexen Analysis mal gesagt, dass sich dann das Vorzeichen umdreht. Mir ist aber klar, dass die Tatsache, dass ich über den Einheitskreis integriere noch eine große Rolle dabei spielt, weiß leider aber nicht genau welche...

Wäre nett, wenn mir jemand helfen könnte. Wie gesagt, ich erwarte keinen ausführlichen Beweis, sondern möchte nur wissen, ob das richtig ist.

Vielen, vielen dank schonmal im Voraus...


        
Bezug
Konjugation im Differential: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Mo 12.01.2009
Autor: Leopold_Gast

Für [mm]z = \operatorname{e}^{\operatorname{i}t}[/mm] folgt:

[mm]\frac{\mathrm{d}z}{z} = \frac{\operatorname{i} \operatorname{e}^{\operatorname{i}t} \, \mathrm{d}t}{ \operatorname{e}^{\operatorname{i}t}} = \operatorname{i} \, \mathrm{d}t[/mm]

[mm]- \frac{\overline{\mathrm{d}z}}{\overline{z}} = - \overline{\left(\frac{\mathrm{d}z}{z} \right)} = - \overline{\operatorname{i}} \ \mathrm{d}t = \operatorname{i} \, \mathrm{d}t[/mm]

Wenn also für eine Parameterdarstellung [mm]\varphi(t)[/mm] der Ausdruck [mm]\frac{\varphi'(t)}{\varphi(t)}[/mm] rein imaginär ist, klappt die Umformung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de