www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Konstante ja oder nein?
Konstante ja oder nein? < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konstante ja oder nein?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:33 Di 26.02.2013
Autor: Bodo0686

Hallo,
wenn ich eine Fläche gegeben habe die wie folgt aussieht:

[mm] c(t)=(v_0 \cdot [/mm] sint, t, [mm] v_0 \cdot [/mm] cost)

die Ableitung nach t bilde:

[mm] c'(t)=(v_0 \cdot [/mm] cost, 1, [mm] -v_0 \cdot [/mm] sint)

stimmt doch bislang?

und dann [mm] ||c'||^3 [/mm] berechne: Ergebnis: [mm] (1+v_0)^\frac{3}{2}. [/mm]
Ist das jetzt eine Konstante?

Grüße!

        
Bezug
Konstante ja oder nein?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Di 26.02.2013
Autor: fred97


> Hallo,
>  wenn ich eine Fläche gegeben habe die wie folgt
> aussieht:
>  
> [mm]c(t)=(v_0 \cdot[/mm] sint, t, [mm]v_0 \cdot[/mm] cost)
>  
> die Ableitung nach t bilde:
>  
> [mm]c'(t)=(v_0 \cdot[/mm] cost, 1, [mm]-v_0 \cdot[/mm] sint)
>  
> stimmt doch bislang?

Ja


>
> und dann [mm]||c'||^3[/mm] berechne: Ergebnis: [mm](1+v_0)^\frac{3}{2}.[/mm]
>  Ist das jetzt eine Konstante?

ja

FRED

>  
> Grüße!


Bezug
                
Bezug
Konstante ja oder nein?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:46 Di 26.02.2013
Autor: Bodo0686


> > Hallo,
>  >  wenn ich eine Fläche gegeben habe die wie folgt
> > aussieht:
>  >  
> > [mm]c(t)=(v_0 \cdot[/mm] sint, t, [mm]v_0 \cdot[/mm] cost)
>  >  
> > die Ableitung nach t bilde:
>  >  
> > [mm]c'(t)=(v_0 \cdot[/mm] cost, 1, [mm]-v_0 \cdot[/mm] sint)
>  >  
> > stimmt doch bislang?
>
> Ja
>  
>
> >
> > und dann [mm]||c'||^3[/mm] berechne: Ergebnis: [mm](1+v_0)^\frac{3}{2}.[/mm]
>  >  Ist das jetzt eine Konstante?
>  
> ja
>  
> FRED
>  >  
> > Grüße!
>  

Ok, jetzt kommt die nächste Frage und zwar, wenn ich jetzt entscheiden möchte, ob eine Geodäte vorliegt (gegeben wenn [mm] k_g=0 [/mm] und ||c'(t)||=const.) und ich hätte folgende Ergebnisse:

[mm] k_g [/mm] = [mm] \frac{{-v_0}^3-v_0 }{(1+v_0^2)} [/mm] und [mm] ||c'(t)||=(1+v_0)^\frac{1}{2} [/mm]

Dann liegt doch keine Geodäte vor, weil [mm] k_g \not= [/mm] 0, richtig!?

Bezug
                        
Bezug
Konstante ja oder nein?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:02 Di 26.02.2013
Autor: steppenhahn

Hallo,



> > > [mm]c(t)=(v_0 \cdot[/mm] sint, t, [mm]v_0 \cdot[/mm] cost)

> > > [mm]c'(t)=(v_0 \cdot[/mm] cost, 1, [mm]-v_0 \cdot[/mm] sint)


> > > und dann [mm]||c'||^3[/mm] berechne: Ergebnis: [mm](1+v_0)^\frac{3}{2}.[/mm]


> Ok, jetzt kommt die nächste Frage und zwar, wenn ich jetzt
> entscheiden möchte, ob eine Geodäte vorliegt (gegeben
> wenn [mm]k_g=0[/mm] und ||c'(t)||=const.) und ich hätte folgende
> Ergebnisse:
>  
> [mm]k_g[/mm] = [mm]\frac{{-v_0}^3-v_0 }{(1+v_0^2)}[/mm] und
> [mm]||c'(t)||=(1+v_0)^\frac{1}{2}[/mm]
>  
> Dann liegt doch keine Geodäte vor, weil [mm]k_g \not=[/mm] 0,
> richtig!?

Da ist noch ein kleiner Fehler bei $||c'(t)||$, da sollte [mm] $v_0^2$ [/mm] statt [mm] $v_0$ [/mm] stehen.

Zu diesem [mm] $k_g$ [/mm] gehört auch eine Fläche, in die das $c(t)$ eingebettet wurde (siehe []Geodätische Krümmung).

Weil du nicht schreibst, welche Fläche das ist, können wir dein Ergebnis nicht überprüfen.

Aber offensichtlich ist [mm] $k_g$ [/mm] laut deiner Rechnung nicht Null, und bei einer geodätischen muss dieser Wert Null sein. Also liegt keine Geodäte vor.


Viele Grüße,
Stefan

Bezug
                                
Bezug
Konstante ja oder nein?: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:19 Mi 27.02.2013
Autor: Bodo0686

Es handelt sich um diese Fläche:
$f(u,v)=(v [mm] \cdot [/mm] sinu, u, [mm] v\cdot [/mm] cosu)$

mit der Aufgabe, dass ich die Krümmung, geödätische und Normalkrümmung der Parameterlinien bestimmen soll.

[mm] $k_g=\frac{det(c',c'',n)}{||c'||^3}$ [/mm]

Da hab ich $u(t)=t, [mm] v(t)=v_0$ [/mm] gesetzt mit $c=f [mm] \circ [/mm] u, c(t)=f(u(t),v(t))$

Kann ich hier die Krümmung K mit [mm] K^2=K_g^2+K_n^2 [/mm] bestimmen?

Grüße!

Bezug
                                        
Bezug
Konstante ja oder nein?: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Fr 01.03.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Konstante ja oder nein?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:53 Di 26.02.2013
Autor: abakus


> Hallo,
>  wenn ich eine Fläche gegeben habe die wie folgt
> aussieht:

Hallo,
ist denn das eine Fläche? Das ist doch nur eine um die y-Achse gewickelte Schraubenlinie.
Gruß Abakus

>  
> [mm]c(t)=(v_0 \cdot[/mm] sint, t, [mm]v_0 \cdot[/mm] cost)
>  
> die Ableitung nach t bilde:
>  
> [mm]c'(t)=(v_0 \cdot[/mm] cost, 1, [mm]-v_0 \cdot[/mm] sint)
>  
> stimmt doch bislang?
>
> und dann [mm]||c'||^3[/mm] berechne: Ergebnis: [mm](1+v_0)^\frac{3}{2}.[/mm]
>  Ist das jetzt eine Konstante?
>  
> Grüße!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de