www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konstruktion Potenzreihe
Konstruktion Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konstruktion Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 Di 06.04.2010
Autor: lok

Aufgabe
Geben Sie zu jedem r [mm] \in [0,\infty) [/mm] vereinigt mit [mm] {\infty} [/mm] eine Potenzreihe [mm] \summe_{n=0}^{\infty} an(z-z0)^{n}, [/mm] an sei Element der komplexen Zahlen, mit Konvergenzradius r an.

Guten Abend im Matheforum ;)

ich habe da diese Aufgabe gestellt bekommen bei der ich nicht so wirklich weiß wie ich rangehen könnte, wäre lieb, wenn mir jemand helfen könnte.

danke im Vorraus,
lg lok

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konstruktion Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Di 06.04.2010
Autor: rrgg

Servus!

Les dir mal des durch! http://de.wikipedia.org/wiki/Potenzreihe
Da gibts auch zwei Formeln mit denen man den Konvergenzradius berechnen kann! Des würd ich mal gleich r setzen und mir überlegen wie ich dann die [mm] a_n [/mm] wählen muss.
Für Potenzreihen mit Konvergenzradius unendlich gibts relativ bekannte Beispiele; man kann sich aber auch einfach irgendwelche trivialen überlegen!


Bezug
                
Bezug
Konstruktion Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:09 Mi 07.04.2010
Autor: lok

ok, dankeschön ;)

ich glaube ich habe etwas. Könnte dies hier eine richtige Lösung sein?

[mm] \summe_{n=0}^{\infty} \bruch{1}{(n+1!)} [/mm] -1 [mm] z_{n} [/mm]

was haltet ihr davon?

Liebe Grüße

Bezug
                
Bezug
Konstruktion Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:46 Sa 10.04.2010
Autor: lok

Aufgabe
Es sei zu jedem r aus dem Intervall [mm] [0,\infty) [/mm] vereinigt mit [mm] \infty [/mm] eine Potenzreihe folgender Form  [mm] \summe_{n=0}^{\infty} an(z-z0)^{n} [/mm] mit Konvergenzradius r anzugeben.

Hey,

Als Lösung habe ich das anzubieten, bin mir allerdings nicht sicher, was haltet ihr davon?
$ [mm] \summe_{n=0}^{\infty} \bruch{1}{(n+1!)} [/mm] $ -1 $ [mm] z_{n} [/mm] $

LG

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                        
Bezug
Konstruktion Potenzreihe: nicht klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:54 Sa 10.04.2010
Autor: Loddar

Hallo lok!


> [mm]\summe_{n=0}^{\infty} \bruch{1}{(n+1!)}[/mm] -1 [mm]z_{n}[/mm]

Zum einen: fehlen da nicht ein paar Klammern?
Zum anderen: für welches r soll denn dieser Vorschlag nun sein?


Gruß
Loddar


Bezug
                                
Bezug
Konstruktion Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:50 Sa 10.04.2010
Autor: lok

[mm] \summe_{n=0}^{\infty}( \bruch{1}{(n+1!)} [/mm]  -1)  [mm] z_{n} [/mm]

ich dächte eigentlich, dass ich mit dieser Gleichung alle r´s erwische (für unterschiedliche n)?

Bezug
                                        
Bezug
Konstruktion Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 So 11.04.2010
Autor: steppenhahn

Hallo!

>  [mm]\summe_{n=0}^{\infty}( \bruch{1}{(n+1!)}[/mm]  -1)  [mm]z_{n}[/mm]
>
> ich dächte eigentlich, dass ich mit dieser Gleichung alle
> r´s erwische (für unterschiedliche n)?

Nein.
Es gibt bei dieser Formel keine "verschiedenen" n, denn die Laufvariable der Summe ist doch n !

Vermutlich (ich habe es nicht nachgerechnet) konvergiert deine Reihe mit Konvergenzradius $r = 1$, weil dein [mm] $a_{n} [/mm] = [mm] \left(\frac{1}{(n+1)!}-1\right)$ [/mm] ja gegen -1 konvergiert.

--------

Beginne die Aufgabe doch lieber so:

1. Reihe mit Konvergenzradius r=0.

Formel von Cauchy-Hadamard: $r = [mm] \frac{1}{\limsup_{n\to\infty}\sqrt[n]{|a_{n}|}}$. [/mm]

r wird Null, wenn der Nenner unendlich wird. Du musst also eine Folge [mm] $a_{n}$ [/mm] finden, für die [mm] $\sqrt[n]{|a_{n}|}$ [/mm] gegen unendlich konvergiert. Einfachsterweise könnte das [mm] $a_{n} [/mm] = [mm] n^{n}$ [/mm] sein.

Wie lautet dann deine Potenzreihe?

2. Reihe mit Konvergenzradius [mm] $r=\infty$. [/mm]

Sicher habt ihr da schon mindestens eine Reihe kennengelernt, zum Beispiel

[mm] $\exp(x) [/mm] = [mm] \sum_{n=0}^{\infty}\frac{x^{n}}{n!}$. [/mm]

Ansonsten wieder Formel benutzen und überlegen, wie ein [mm] $a_{n}$ [/mm] auszusehen hat, damit der Nenner 0 wird!

3. Reihe mit Konvergenzradius $0 < r < [mm] \infty$. [/mm]

Benutze hier wieder die Formel von Cauchy-Hadamard:

$r = [mm] \frac{1}{\limsup_{n\to\infty}\sqrt[n]{|a_{n}|}}$. [/mm]

Natürlich müssen wir jetzt systematisch eine Folge finden, die wir auf alles anwenden können, denn wir wollen ja nicht für jedes r ein Beispiel geben...

Benutze den Ansatz [mm] $a_{n} [/mm] = [mm] c^{n}$, [/mm] wobei c noch in Abhängigkeit von r zu bestimmen ist !

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de