www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Konstruktion eines Dreiecks
Konstruktion eines Dreiecks < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konstruktion eines Dreiecks: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 10:10 Mi 30.12.2009
Autor: Windbeutel

Aufgabe
Konstruiere ein Dreieck aus den bekannten Seitenhalbierenden :
Sa=7cm; Sb=7,8cm; Sc= 6cm

Hallo,
nachdem ich nun drei Stunden mich an dieser Aufgabe probiert habe muss ich endgültig passen und um Hilfe bitten. Ich habe im Netz zwar Konstruktionsbeschreibungen gefunden, diese aber nicht verstanden.

Also klar ist mir:
Ich kann eine der Seitenhalbierenden Zeichnen und auch den Schwerpunkt ermitteln.
auch das Lageverhältniss der Seitenhalbierenden zueinander (2:1)kann ich mir zu nutze machen und mit Kreisen um S den Abstand der Eckpunkte zu ermitteln.
Aber ich verstehe einfach nicht wie ich den zweiten Ortspunkt für diese Eckpunkte herausbekomme und auf welcher Gesetzmäßigkeit das basieren soll.

Wäre wirklich dankbar, wenn jemand die Zeit findet mir das zu erklären.

Vielen dank im voraus


        
Bezug
Konstruktion eines Dreiecks: Antwort
Status: (Antwort) fertig Status 
Datum: 10:40 Mi 30.12.2009
Autor: abakus


> Konstruiere ein Dreieck aus den bekannten
> Seitenhalbierenden :
>  Sa=7cm; Sb=7,8cm; Sc= 6cm
>  Hallo,
>  nachdem ich nun drei Stunden mich an dieser Aufgabe
> probiert habe muss ich endgültig passen und um Hilfe
> bitten. Ich habe im Netz zwar Konstruktionsbeschreibungen
> gefunden, diese aber nicht verstanden.
>  
> Also klar ist mir:
>  Ich kann eine der Seitenhalbierenden Zeichnen und auch den
> Schwerpunkt ermitteln.
>  auch das Lageverhältniss der Seitenhalbierenden
> zueinander (2:1)kann ich mir zu nutze machen und mit
> Kreisen um S den Abstand der Eckpunkte zu ermitteln.
>  Aber ich verstehe einfach nicht wie ich den zweiten
> Ortspunkt für diese Eckpunkte herausbekomme und auf
> welcher Gesetzmäßigkeit das basieren soll.

Hallo,
nimm an, du hättest das Dreieck schon (siehe Skizze).
[Dateianhang nicht öffentlich]
Oh, das war etwas zu klein. Hier nochmal:
[Dateianhang nicht öffentlich]
Wenn du die Strecke GF über F hinaus um sich selbst verlängerst, erhältst du die Strecke GH mit der Länge [mm] (2/3)s_a. [/mm]
Nach Strahlensatz ist HB doppelt so lang wie GE und beträgt somit [mm] (2/3)s_c [/mm] (in der Skizze ist dort ein Schreibfehler, da steht fälschlicherweise [mm] s_a). [/mm]
Somit hat das Dreieck GBH die Seitenlängen [mm] (2/3)s_a, (2/3)s_b [/mm] und [mm] (2/3)s_c [/mm] und kann aus den gegebenen Längen konstruiert werden. Dann konstruierst du dort den Punkt F, verdoppelst BF bis nach C, und A bekommst du jetzt sicher auch hin.
Gruß Abakus

>  
> Wäre wirklich dankbar, wenn jemand die Zeit findet mir das
> zu erklären.
>  
> Vielen dank im voraus
>  


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Konstruktion eines Dreiecks: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:43 Do 31.12.2009
Autor: Windbeutel

Danke für deine Hilfe,
ist dies die einzige Lösungsmöglichkeit? Von den Strahlensätzen lese ich nähmlich gerade zum ersten mal.
Greets

Bezug
                        
Bezug
Konstruktion eines Dreiecks: Antwort
Status: (Antwort) fertig Status 
Datum: 08:57 Do 31.12.2009
Autor: glie


> Danke für deine Hilfe,
>  ist dies die einzige Lösungsmöglichkeit? Von den
> Strahlensätzen lese ich nähmlich gerade zum ersten mal.
>  Greets


Hallo,

wenn du noch nie etwas von Strahlensätzen gehört hast, wie konstruierst du dann einen Punkt auf einer Strecke, der die Strecke im Verhältnis 2:1 teilt?

Vielleicht hast du anstatt Strahlensatz ja auch die Begriffe V-Figur und X-Figur oder zentrische Streckung im Kopf?

Gruß Glie

Bezug
                                
Bezug
Konstruktion eines Dreiecks: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:07 Do 31.12.2009
Autor: Windbeutel

Tja, also Nein....
ich habe nochmal das Matheheft durchgeschaut um zu kontrolieren ob ich einen dieser Begriffe verschlafen habe, aber tatsächlich war keiner dieser Begriffe bei uns jemals ein Thema.

LG

Bezug
                                        
Bezug
Konstruktion eines Dreiecks: Antwort
Status: (Antwort) fertig Status 
Datum: 09:42 Do 31.12.2009
Autor: mmhkt

Guten Morgen,
zu den Strahlensätzen gibt es einiges zu lesen.
Nimm dir die []Links auf dieser Seite vor, es sollten einige brauchbare Informationen dabei sein.

Viel Erfolg und natürlich die nötige Geduld!

Schönen Gruß und alles Gute für 2010!
mmhkt



Bezug
                                        
Bezug
Konstruktion eines Dreiecks: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:25 Do 31.12.2009
Autor: leduart

Hallo
kennst du statt Strahlensatz etwa aehnliche Figuren, bzw. aehnliche Dreiecke? Wie teilst du mit Zirkel und Lineal eine Strecke in irgendeinem verhaeltnis?
Gruss leduart

Bezug
                        
Bezug
Konstruktion eines Dreiecks: Strahlensätze ? Ähnlichkeit !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:22 Do 31.12.2009
Autor: Al-Chwarizmi


> Danke für deine Hilfe,
>  ist dies die einzige Lösungsmöglichkeit? Von den
> Strahlensätzen lese ich nämlich gerade zum ersten mal.
>  Greets

Den Begriff "Strahlensätze" verwende ich normaler-
weise kaum. Man kann ganz gut mit dem Begriff
der Ähnlichkeit und ihren Eigenschaften auskommen.

LG


Bezug
                                
Bezug
Konstruktion eines Dreiecks: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:05 Fr 01.01.2010
Autor: Windbeutel

Danke für eure Hilfe
Greets und ein frohes neues Jahr

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de