www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Konstruktion von \IN
Konstruktion von \IN < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konstruktion von \IN: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:25 Mo 20.10.2014
Autor: sissile

Aufgabe
Theorem:
Sei die Nachfolgeeigenschaft [mm] \psi [/mm]
[mm] \psi(Y):= \forall [/mm] X : ( [mm] \emptyset \in [/mm] Y [mm] \wedge [/mm] (X [mm] \in [/mm] Y => S(X) [mm] \in [/mm] Y))
gegeben. Dann gilt
[mm] \exists! \IN [/mm] : [mm] \forall [/mm] M : [mm] (\psi(\IN) \wedge (\psi(M) [/mm] => [mm] \IN \subseteq [/mm] M))
Mit anderen Worten es gibt genau eine Menge der natürlichen Zahlen. Sie ist die kleinste Menge, die die Nachfolgeeigenschaft besitzt.

Wir haben definiert für eine beliebige Menge A den Nachfolger S(A) durch S(A):= A [mm] \cup \{A\} [/mm]

Hallo,
Ich habe zwei Fragen zum Beweis im Buch. Ich tippe ihn nun einmal ab:

Wegen ZF7 gibt es eine Menge Z, die die Eigenschaft [mm] \psi(Z) [/mm] besitzt. Wir definieren die Mengenfamilie N:= [mm] \{M \in \IP Z | \psi(M)\}. [/mm] Sein nun [mm] \IN= \bigcap [/mm] N.
(Für eine Mengenfamilie [mm] \mathcal{F} [/mm] ist [mm] \bigcap \mathcal{F} [/mm] definiert durch [mm] \bigcap \mathcal{F}:=\{x \in \bigcup \mathcal{F}|\forall F \in \mathcal{F} : (x \in F)\} [/mm]
Dann gilt [mm] \forall [/mm] M [mm] \in [/mm] N: [mm] \psi(M), [/mm] und daher [mm] \forall [/mm] M [mm] \in N:(\emptyset \in [/mm] M), also auch [mm] \emptyset \in \IN. [/mm] Ferner wissen wir X [mm] \in \IN [/mm] => [mm] (\forall [/mm] M [mm] \in [/mm] N: (X [mm] \in [/mm] M)), deshalb [mm] \forall [/mm] M [mm] \in [/mm] N: (S(X) [mm] \in [/mm] M), was wiederum S(X) [mm] \in \IN [/mm] zur Folge hat. Daher gilt [mm] \psi(\IN) [/mm]
Um die Eindeutigkeit zu zeigen, nehmen wir an, dass [mm] \exists [/mm] M: [mm] \psi(M) [/mm] (etwa ein M, das nicht Teilmenge von Z ist). Mit denselben Argumenten wie oben können wir zeigen, dass [mm] \psi(Z \cap [/mm] M) gilt, sowie (Z [mm] \cap [/mm] M) [mm] \subseteq [/mm] M und [mm] \IN \subseteq [/mm] Z [mm] \cap [/mm] M, was [mm] \IN \subseteq [/mm] M impliziert.
[mm] \Box [/mm]


Frage:
Warum gilt am Schluss des Beweises: [mm] \IN \subseteq [/mm] Z [mm] \cap [/mm] M ?

> Ferner wissen wir X [mm] \in \IN.. [/mm]

Warum wissen wir, dass X [mm] \in \IN [/mm] ?

LG,
sissi

        
Bezug
Konstruktion von \IN: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:31 Di 21.10.2014
Autor: UniversellesObjekt

Es wäre wirklich gut, wenn du pro Formel ein Dollarzeichen davor und eines danach setzen könntest. Es erhöht die Lesbarkeit einfach ungemein. So ist das kaum zu entziffern.

Liebe Grüße,
UniversellesObjekt

Bezug
        
Bezug
Konstruktion von \IN: Antwort
Status: (Antwort) fertig Status 
Datum: 08:23 Di 21.10.2014
Autor: MacMath


> Frage:
> Warum gilt am Schluss des Beweises: [mm]\IN \subseteq[/mm] Z [mm]\cap[/mm] M
> ?

[mm] $\IN$ [/mm] ist doch per Definition gerade der Schnitt über alle Mengensysteme $M$, die [mm] $\psi(M)$ [/mm] erfüllen.


>  
> > Ferner wissen wir X [mm]\in \IN..[/mm]
>  Warum wissen wir, dass X
> [mm]\in \IN[/mm] ?

Das hat niemand behauptet, dort steht:
Wir wissen $X  [mm] \in \IN \Rightarrow (\forall [/mm]  M  [mm] \in [/mm] N: (X  [mm] \in [/mm]  M))$

Also WENN [mm] $X\in \IN$, [/mm] dann....

Viele Grüße
Daniel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de