www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Kontinuierlicher Zahlungsstrom
Kontinuierlicher Zahlungsstrom < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kontinuierlicher Zahlungsstrom: Aufgabe Korrektur+Frage
Status: (Frage) beantwortet Status 
Datum: 17:22 Sa 24.12.2005
Autor: scientyst

Aufgabe
Sei R(t) ein Kontinuierlicher Zahlungsstrom,so dass in jedem Zeitintervall[t1,t2] insgesamt das nominelle Kapital  [mm] \Delta K(t1,t2)=\integral_{t1}^{t2}{R(t) dt} [/mm] fließe. Sei weiterhin R(t)=3,6€*t und i=6% der Jahreszinssatz.

1) Welches nominelle Kapital [mm] \Delta [/mm] K(t,t+1) fließt im Zeitintervall [t,t+1]?

2) Welches nominelle Kapital K fließt im Zeitintervall [0,100] ?

3) Wie hoch ist der Gegenwartswert (Barwert) B des im Zeitintervall [0,100] fließenden Zahlungsstromes?
[mm] (Hinweis:e^-^6\approx0,0025) [/mm]

Zu 1) habe ich folgendes:

[mm] \Delta K(t1,t2)=\integral_{t1}^{t2}{R(t) dt}=\integral_{0}^{100}{3,6*t dt} [/mm]

[mm] F(t)=1,8*t^2 [/mm]

[mm] \integral_{0}^{100}{3,6*t dt}=F(100)-F(0)=18000 [/mm]


zu 2)

R(t)=3,6*t*exp(i*t)=

R(t)=3,6*t*exp(0,06*t)=3,6*t*exp(0,06*100)=3,6*400*t=1440*t

F(t)=720*t2

[mm] \integral_{0}^{100}{3,6*t *exp(0,06*t)dt}=F(100)-F(0)=100^2*720=7200000 [/mm]

Kann mir jemand sagen ob das so richtig ist????



        
Bezug
Kontinuierlicher Zahlungsstrom: zu Aufgabe 1: Intervallgrenzen
Status: (Antwort) fertig Status 
Datum: 10:41 Di 27.12.2005
Autor: Loddar

Hallo scientyst!


> 1) Welches nominelle Kapital [mm]\DeltaK(t,t+1)[/mm] fließt im Zeitintervall[t,t+1]?


> [mm]\Delta K(t1,t2)=\integral_{t1}^{t2}{R(t)dt}=\integral_{0}^{100}3,6*t dt[/mm]


Wie kommst Du denn hier auf die Integrationsgrenzen [mm] $t_1 [/mm] \ =\ 0$ und [mm] $t_2 [/mm] \ = \ 100$ ? Diese sind doch erst für Teilaufgabe 2 relevant.

Nach meiner Auffassung musst Du hier berechnen:

[mm] $\Delta [/mm] K(t, t+1) \ = \ [mm] \integral_{t}^{t+1}{R(t) \ dt} [/mm] \ = \ [mm] \integral_{t}^{t+1}{3.6*t \ dt} [/mm] \ = \ [mm] \left[ \ 1.8*t^2 \ \right]_{t}^{t+1} [/mm] \ = \ ...$


Gruß
Loddar


Bezug
                
Bezug
Kontinuierlicher Zahlungsstrom: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Di 27.12.2005
Autor: scientyst

Sorry,habe mich irgendwie verschrieben.Der Lösungsteil 1) gehört zu Aufgabenteil 2).Ist denn der Lösungsteil 1) richtig?? Und wie gehe ich bei Teil 3) Vor,Danke.

Bezug
        
Bezug
Kontinuierlicher Zahlungsstrom: Korrektur
Status: (Antwort) fertig Status 
Datum: 09:43 Mi 28.12.2005
Autor: Julius

Hallo!

Ich sehe gerade, dass hier mit einem Jahreszinssatz gerechnet wird und nicht mit stetigem Zinssatz. Dann muss man anders abzinsen. Vermutlich ist es so gemeint, dass man jedes Jahr (vorschüssig (?)) abzinst, im Sinne von

[mm] $\sum\limits_{k=0}^{99} e^{-0.06 \cdot k} \int\limits_ {k}^{k+1} R(t)\, [/mm] dt$,

das passt dann wenigstens zum Tipp, wie man sieht, wenn man es mit Hilfe der geometrischen Reihe ausrechnet.


Bei der Aufgabe 3 soll man vermutlich

[mm] $\int\limits_0^{100} e^{-0.06 \cdot t} \cdot R(t)\, [/mm] dt$

berechnen; dadurch diskontiert man den (stetigen) Zahlungsstrom.


Liebe Grüße
Julius



Bezug
                
Bezug
Kontinuierlicher Zahlungsstrom: Rückrrage
Status: (Frage) beantwortet Status 
Datum: 12:17 Mi 28.12.2005
Autor: scientyst

Hallo

Wie könnte ich denn den Endwert E im Zeitintervall [0,100] berechnen??

Bezug
                        
Bezug
Kontinuierlicher Zahlungsstrom: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 Mi 28.12.2005
Autor: Julius

Hallo!

Ich verstehe deine Frage nicht; den Endwert hast du doch schon berechnet. [haee]

Liebe Grüße
Julius

Bezug
                        
Bezug
Kontinuierlicher Zahlungsstrom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Mi 28.12.2005
Autor: Julius

Hallo!

Ich hatte nicht sorgsam genug gelesen und meine Antwort oben jetzt korrigiert. Leider verstehe ich bei solchen Aufgaben häufig die Aufgabenstellung nicht.

Liebe Grüße
Julius

Bezug
                
Bezug
Kontinuierlicher Zahlungsstrom: Rückfrage
Status: (Frage) für Interessierte Status 
Datum: 19:11 Mi 28.12.2005
Autor: scientyst

Sorry,komme jetzt mit deinen Lösungen irgendwie durcheinander.Was sind jetzt die Lösungswege zu 1+2+3??

Bezug
                        
Bezug
Kontinuierlicher Zahlungsstrom: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 Sa 28.01.2006
Autor: PStefan

Hallo!

Leider konnte dir keiner, innerhalb der von dir vorgegebenen Zeit, deine Frage beantworten. Nun muss ich deine Frage für Interessierte markieren.
Falls ich die Fälligkeit verlängern sollte, schreibe bitte eine private Nachricht an mich!

Vielleicht hast du nächstes Mal mehr Glück. [kleeblatt]

Beste Grüße
PStefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de