www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Kontraposition
Kontraposition < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kontraposition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 Di 16.11.2010
Autor: FrageAcc

Aufgabe
[mm] \neg(U_{1} \cap U_{2} [/mm] = {0}) [mm] \Rightarrow \neg[(u_{1} [/mm] + [mm] u_{2} [/mm] = [mm] v_{1} [/mm] + [mm] v_{2} [/mm] = x) [mm] \Rightarrow (u_{1} [/mm] = [mm] v_{1} \wedge u_{2} [/mm] = [mm] v_{2})] [/mm]

Hallo, ich möchte einen Beweis per Kontraposition durchführen, jedoch bin ich mir nicht sicher darüber, wie ich das Negation Zeichen in die Klammer zuziehen habe... Kann mir jemand helfen?

        
Bezug
Kontraposition: Antwort
Status: (Antwort) fertig Status 
Datum: 15:26 Di 16.11.2010
Autor: fred97


> [mm]\neg(U_{1} \cap U_{2}[/mm] = {0}) [mm]\Rightarrow \neg[(u_{1}[/mm] +
> [mm]u_{2}[/mm] = [mm]v_{1}[/mm] + [mm]v_{2}[/mm] = x) [mm]\Rightarrow (u_{1}[/mm] = [mm]v_{1} \wedge u_{2}[/mm]
> = [mm]v_{2})][/mm]
>  Hallo, ich möchte einen Beweis per Kontraposition
> durchführen, jedoch bin ich mir nicht sicher darüber, wie
> ich das Negation Zeichen in die Klammer zuziehen habe...
> Kann mir jemand helfen?

Fragen:

1. Worum gehts denn ?

2. Was bedeuten [mm] U_1,U_2, u_1, u_2 [/mm] und x ?

3. Wie hängen die Dinger aus 2. zusammen ?

FRED


Bezug
                
Bezug
Kontraposition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Di 16.11.2010
Autor: FrageAcc

[mm] u_{1} [/mm] usw. sind Vektoren und [mm] U_{1,2}.. [/mm] sind Unterräume. Mir geht es nur darum wie ich die Aussage verneine ...

Bezug
                        
Bezug
Kontraposition: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Di 16.11.2010
Autor: fred97


> [mm]u_{1}[/mm] usw. sind Vektoren und [mm]U_{1,2}..[/mm] sind Unterräume.
> Mir geht es nur darum wie ich die Aussage verneine ...

Meinst Du folgende Aussage;   [mm] U_{1} \cap U_{2} [/mm] = { 0 }  ?

Wenn ja, so ist die Verneinung:  [mm] U_{1} \cap U_{2} \ne [/mm]  { 0 }

FRED


Bezug
                                
Bezug
Kontraposition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Di 16.11.2010
Autor: FrageAcc

Ja aber da ist ja noch eine Negation :(

Bezug
                                        
Bezug
Kontraposition: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Di 16.11.2010
Autor: fred97

Jetzt schreib doch mal genau auf, um welche Aussage es geht

FRED

Bezug
                                                
Bezug
Kontraposition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:43 Di 16.11.2010
Autor: FrageAcc

$ [mm] \Rightarrow \neg[(u_{1} [/mm] $ + $ [mm] u_{2} [/mm] $ = $ [mm] v_{1} [/mm] $ + $ [mm] v_{2} [/mm] $ = x) $ [mm] \Rightarrow (u_{1} [/mm] $ = $ [mm] v_{1} \wedge u_{2} [/mm] $ = $ [mm] v_{2})] [/mm] $

Diese Aussage, wie ziehe ich die Negation hinein??

Bezug
                                                        
Bezug
Kontraposition: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Di 16.11.2010
Autor: schachuzipus

Hallo FrageAcc,

> [mm]\Rightarrow \neg[(u_{1}[/mm] + [mm]u_{2}[/mm] = [mm]v_{1}[/mm] + [mm]v_{2}[/mm] = x) [mm]\Rightarrow (u_{1}[/mm] = [mm]v_{1} \wedge u_{2}[/mm] = [mm]v_{2})][/mm]
>
> Diese Aussage, wie ziehe ich die Negation hinein??

Ich deute das mal so, dass der Pfeil zu Anfang ein Tippfehler ist.

Die Aussage hat die Struktur [mm]\neg \ (p\Rightarrow q)[/mm]

wobei [mm]p[/mm] die Aussage ist: [mm]u_1+u_2=v_1+v_2=x[/mm] und [mm]q[/mm] die Aussage [mm]u_1=v_1\wedge u_2=v_2[/mm]

Es ist [mm]\neg \ (p\Rightarrow q) \ \equiv \ p\wedge\neg q[/mm]

Also [mm](u_1+u_2=v_1+v_2=x) \ \wedge \ \neg(u_1=v_1\wedge u_2=v_2)[/mm]

Und das "nicht" in der hinteren Aussage kannst du mit de Morgan reinziehen - kannst du?

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de