www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Kontrolle von DGL 1. Ordnung
Kontrolle von DGL 1. Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kontrolle von DGL 1. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:24 So 23.01.2011
Autor: Geddon

Hallo,

wollte fragen ob meine Rechnung richtig ist.

DGL: x' = [mm] t*sin(t)*(4x+1)^{0.5} [/mm]

[mm] \integral_{}^{}{(4x+1)^{-0.5} dx} [/mm] = [mm] \integral_{}^{}{t*sin(t) dt} [/mm]

[mm] 0.5(4x+1)^{0.5} [/mm] = t(-cos(t))+sin(t)

und nach x aufgelöst:
x= 0.25 [mm] \wurzel{2(t-cos(t)+sin(t)} [/mm] - 0.25

Gruß
Geddon


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kontrolle von DGL 1. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 So 23.01.2011
Autor: fred97


> Hallo,
>  
> wollte fragen ob meine Rechnung richtig ist.
>  
> DGL: x' = [mm]t*sin(t)*(4x+1)^{0.5}[/mm]
>  
> [mm]\integral_{}^{}{(4x+1)^{-0.5} dx}[/mm] =
> [mm]\integral_{}^{}{t*sin(t) dt}[/mm]
>  
> [mm]0.5(4x+1)^{0.5}[/mm] = t(-cos(t))+sin(t)


O.K.


>  
> und nach x aufgelöst:
>  x= 0.25 [mm]\wurzel{2(t-cos(t)+sin(t)}[/mm] - 0.25

Was hast Du denn da gemacht ? Das stimmt hinten und vorne nicht !

      aus [mm] \wurzel{a}=b [/mm]     folgt  [mm] a=b^2 [/mm]

FRED

>  
> Gruß
>  Geddon
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Kontrolle von DGL 1. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 So 23.01.2011
Autor: Geddon

Hi,

ich hab erst mit *2 gerechnet, die Wurzel gezogen, -1 und dann nochmal /4


x= 0.25 [mm] \wurzel{2(t-cos(t)+sin(t))} [/mm]  - 0.25
Da fehlte natürlich noch eine Klammer

Was hab ich denn da falsch gemacht? für mich sieht das richtig aus

Gruß
Geddon

Bezug
                        
Bezug
Kontrolle von DGL 1. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 So 23.01.2011
Autor: fred97


> Hi,
>  
> ich hab erst mit *2 gerechnet, die Wurzel gezogen, -1 und
> dann nochmal /4
>  
>
> x= 0.25 [mm]\wurzel{2(t-cos(t)+sin(t))}[/mm]  - 0.25
>  Da fehlte natürlich noch eine Klammer
>  
> Was hab ich denn da falsch gemacht? für mich sieht das
> richtig aus

Dann mal Glückwunsch, für mich nicht. Du hast:

$ [mm] 0.5(4x+1)^{0.5} [/mm] $ = t(-cos(t))+sin(t)

Wenn Du jetzt nach x auflösen willst mußt Du doch quadrieren ! und nicht Wurzelziehen. Das habe ich Dir aber schon in meiner ersten Antwort gesagt

FRED

>  
> Gruß
>  Geddon


Bezug
        
Bezug
Kontrolle von DGL 1. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 So 23.01.2011
Autor: Geddon

ok danke,

dann hab ich:
x = t² - t*cos(t) + t*sin(t) - t*cos(t) + cos²(t) - cos(t)*sin(t) + t*sin(t) - cos(t)*sin(t) - sin²(t) - 0.25 + c

Mit dem AWP x(0) = 0 komm ich dann auf

x = t² - t*cos(t) + t*sin(t) - t*cos(t) + cos²(t) - cos(t)*sin(t) + t*sin(t) - cos(t)*sin(t) - sin²(t) + 2

ist das so ok?


Bezug
                
Bezug
Kontrolle von DGL 1. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 So 23.01.2011
Autor: schachuzipus

Hallo Geddon,


> ok danke,
>  
> dann hab ich:
>  x = t² - t*cos(t) + t*sin(t) - t*cos(t) + cos²(t) -
> cos(t)*sin(t) + t*sin(t) - cos(t)*sin(t) - sin²(t) - 0.25
> + c

Das kann doch nicht sein.

Es muss doch rechterhand beim Quadrieren der Summand [mm] $t^2\cdot{}\cos^2(t)$ [/mm] auftreten ...

Wenn ich das richtig sehe, willst du [mm] $\frac{1}{2}\sqrt{4x+1}=-t\cdot{}\cos(t)+\sin(t)+C$ [/mm] nach $x$ auflösen.

Es scheint am Quadrieren der rechten Seite zu liegen ...

Denke an die binomischen Formeln oder rechne step-by-step [mm] $(-t\cdot{}\cos(t)+\sin(t)+C)\cdot{}(-t\cdot{}\cos(t)+\sin(t)+C)$ [/mm] aus (und hier vor!)

Du siehst direkt, dass du einen Summanden [mm] $t^2\cos^2(t)$ [/mm] erhältst ...

>  
> Mit dem AWP x(0) = 0 komm ich dann auf
>  
> x = t² - t*cos(t) + t*sin(t) - t*cos(t) + cos²(t) -
> cos(t)*sin(t) + t*sin(t) - cos(t)*sin(t) - sin²(t) + 2
>  
> ist das so ok?

Nein!

Gruß

schachuzipus

>  


Bezug
                        
Bezug
Kontrolle von DGL 1. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 So 23.01.2011
Autor: Geddon

Hi,

ups ich hab wohl wieder die Klammer vergessen

[mm] \frac{1}{2}\sqrt{4x+1}= [/mm] t * (- cos(t)) + sin(t) + c

= [mm] \sqrt{4x+1}= [/mm] 2t * (- cos(t)) + 2*sin(t) + 2c

= [2t * (- cos(t)) + 2*sin(t) + c] * [2t * (- cos(t)) + 2*sin(t) + 2c]

= 8t²*2cos²(t) + 4t(- cos(t)*sin(t) + 8tc(- cos(t) + 4*sin²(t)+ 4c *sin(t) + c²

= 2t²*2cos²(t) + t(- cos(t)*sin(t) + 2tc(- cos(t) + sin²(t)+ c*sin(t) + c²/4  -0.25

Bezug
                                
Bezug
Kontrolle von DGL 1. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 So 23.01.2011
Autor: MathePower

Hallo Geddon,

> Hi,
>  
> ups ich hab wohl wieder die Klammer vergessen
>  
> [mm]\frac{1}{2}\sqrt{4x+1}=[/mm] t * (- cos(t)) + sin(t) + c
>  
> = [mm]\sqrt{4x+1}=[/mm] 2t * (- cos(t)) + 2*sin(t) + 2c
>  
> = [2t * (- cos(t)) + 2*sin(t) + c] * [2t * (- cos(t)) +
> 2*sin(t) + 2c]


Das muss doch lauten:

[mm][2t * (- cos(t)) + 2*sin(t) + \red{2}c] * [2t * (- cos(t)) + 2*sin(t) + 2c][/mm]


>  
> = 8t²*2cos²(t) + 4t(- cos(t)*sin(t) + 8tc(- cos(t) +
> 4*sin²(t)+ 4c *sin(t) + c²
>
> = 2t²*2cos²(t) + t(- cos(t)*sin(t) + 2tc(- cos(t) +
> sin²(t)+ c*sin(t) + c²/4  -0.25


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de