www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konver./Grenzwert Wurzelfolge
Konver./Grenzwert Wurzelfolge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konver./Grenzwert Wurzelfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:41 Mi 01.12.2010
Autor: Angelnoir

Aufgabe
Untersuche ob die Folge (an) mit
[mm]a_n=\sqrt{n^2+n}-n[/mm] konvergent sind, ud berechne gegebenenfalls den Grenzwert


Hallo!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe mir überlegt die Konvergenz zu beweisen indem ich zeige, dass (an) eine Cauchy-Folge ist.
Also: [mm]\forall\varepsilon>0\exists N\in\IN\forall n,m \ge N : |an-am|<\varepsilon[/mm]
Leider bin ich dabei zu keinem Ergebnis bekommen, mache das zum ersten Mal. Meine Schritte bis jetzt:
[mm]|(\sqrt{n^2+n}-n)-(\sqrt{m^2+m}-m)|\le |-\sqrt{m^2+m}-m|+|\sqrt{n^2+n}-n|[/mm]
Und dann hörts auf. Ich könnte auch Monotonie und Beschränktheit beweisen.
Der Grenzwert ist 0,5, das weiß ich bereits. Jetzt wollte ich den Sandwichsatz anwenden.
[mm]0,5\le \sqrt{n^2+n}-n = \bruch{(\sqrt{n^2+n}-n)(\sqrt{n^2+n}+n)}{\sqrt{n^2+n}+n} = \bruch{n^2+n-n^2}{\sqrt{n^2+n}+n}=\bruch{n}{\sqrt{n^2+n}+n}[/mm]
Aber dann fält mir nix weiter ein, also eine Folge die auch 0,5 als Grenzwert hat und größer ist.
Für Tipps bin ich dankbar.
Liebe Güße Angelnoir

        
Bezug
Konver./Grenzwert Wurzelfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Mi 01.12.2010
Autor: fred97


> Untersuche ob die Folge (an) mit
> [mm]a_n=\sqrt{n^2+n}-n[/mm] konvergent sind, ud berechne
> gegebenenfalls den Grenzwert
>  
> Hallo!
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich habe mir überlegt die Konvergenz zu beweisen indem ich
> zeige, dass (an) eine Cauchy-Folge ist.


Das wir mühsam ......


>  Also: [mm]\forall\varepsilon>0\exists N\in\IN\forall n,m \ge N : |an-am|<\varepsilon[/mm]
>  
> Leider bin ich dabei zu keinem Ergebnis bekommen, mache das
> zum ersten Mal. Meine Schritte bis jetzt:
>  [mm]|(\sqrt{n^2+n}-n)-(\sqrt{m^2+m}-m)|\le |-\sqrt{m^2+m}-m|+|\sqrt{n^2+n}-n|[/mm]
>  
> Und dann hörts auf. Ich könnte auch Monotonie und
> Beschränktheit beweisen.
>  Der Grenzwert ist 0,5, das weiß ich bereits. Jetzt wollte
> ich den Sandwichsatz anwenden.
>  [mm]0,5\le \sqrt{n^2+n}-n = \bruch{(\sqrt{n^2+n}-n)(\sqrt{n^2+n}+n)}{\sqrt{n^2+n}+n} = \bruch{n^2+n-n^2}{\sqrt{n^2+n}+n}=\bruch{n}{\sqrt{n^2+n}+n}[/mm]
>  
> Aber dann fält mir nix weiter ein, also eine Folge die
> auch 0,5 als Grenzwert hat und größer ist.
>  Für Tipps bin ich dankbar.


Du bist fast am Ziel.

              klammere im Zähler und im Nenner von  [mm] \bruch{n}{\sqrt{n^2+n}+n} [/mm]  jeweils n aus

FRED

>  Liebe Güße Angelnoir


Bezug
                
Bezug
Konver./Grenzwert Wurzelfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:23 Mi 01.12.2010
Autor: Angelnoir

Okay irgendwie hab ich Quatsch gemacht glaube ich.
[mm]\bruch{n}{n}\bruch{1}{\bruch{\sqrt{n^2+n}}{n}+1}}[/mm]


Bezug
                        
Bezug
Konver./Grenzwert Wurzelfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Mi 01.12.2010
Autor: Gonozal_IX


> Okay irgendwie hab ich Quatsch gemacht glaube ich.
>  [mm]\bruch{n}{n}\bruch{1}{\bruch{\sqrt{n^2+n}}{n}+1}}[/mm]
>  

Nein, das passt schon.... du solltest nur konsequent weiter umformen:

[mm]\bruch{n}{n}\bruch{1}{\bruch{\sqrt{n^2+n}}{n}+1}} = \bruch{1}{\sqrt{\bruch{n^2 + n}{n^2}} + 1} = \bruch{1}{\sqrt{1 + \bruch{1}{n}} + 1}[/mm]

Siehst dus jetzt?

MFG,
Gono.

Bezug
                                
Bezug
Konver./Grenzwert Wurzelfolge: Gelöst
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:42 Mi 01.12.2010
Autor: Angelnoir

Ja jetzt seh ichs... Wenn ich jetzt n gegen unendlich laufen lasse:
[mm]\bruch{1}{n} \to 0[/mm]
[mm]\bruch{1}{\sqrt{1 + \bruch{1}{n}} + 1}\to \bruch{1}{2}[/mm]

Super!
Ich danke euch allen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de