www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergent von Reihen
Konvergent von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergent von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 So 25.11.2007
Autor: ednahubertus

Aufgabe
Bestimme das Kon-Verhalten dieser Reihen:
a) [mm] \summe_{i=1}^{n} \wurzel{k}-\wurzel{k-1} [/mm]
b) [mm] \summe_{i=1}^{n}(2k+1)/k²(k+1)² [/mm]

mit der a) komme mit nicht klar weder mit dem Wurzel noch mit dem Quot.Krit.

bei b bin ich mir nicht sicher, ob das mit Ouot.Krit. richtig ist.

Wer kann mir den richtigen Wink zur Lösung geben ? Danke


        
Bezug
Konvergent von Reihen: Hinweise
Status: (Antwort) fertig Status 
Datum: 17:30 So 25.11.2007
Autor: Loddar

Hallo ednahubertus!


Erweitere den Term bei Aufgabe a.) mit [mm] $\left( \ \wurzel{k} \ \red{+} \ \wurzel{k-1} \ \right)$ [/mm] zu einer 3. binomischen Formel und schätze anschließend per Minorantenkriterium ab.


Bei Aufgabe b.) solltest Du mit dem Quotientenkriterium hinkommen.


Gruß
Loddar


Bezug
                
Bezug
Konvergent von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 So 25.11.2007
Autor: ednahubertus

Da steike ich nicht hinter, weder die a) noch die b) bekomme ich hin. Irgendwo mache ich doch hier falsch.
Kann mir das jemand aufbröseln, damit mit ich eben nicht mehr auf den Schlauch sitze.

Bezug
                        
Bezug
Konvergent von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 So 25.11.2007
Autor: leduart

Hallo edna
Hast du Loddars Rat zu a mal befolgt? dann vergleich mal mit 1/k
zu b) was geht denn schief beim Quotientenkriterium.
Du musst schon zeigen, wo deine schierigkeitenliegen, indem du aufschreibst, was du bisher versucht hast und an welcher stelle du scheiterst.
Gruss leduart

Bezug
                                
Bezug
Konvergent von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 So 25.11.2007
Autor: ednahubertus

bei
a) habe ich wohl einen zu schwierigen Vergleich genommen. Kann ich denn immer, wenn mein Gefühl sagt "divergent" , die harm. Reihe nehmen?

bei
b) geht die sache letzlich gegen 1 und dann kann man ja bei Quot.Krit. keine aussage machen. Aber dies spricht dagegen weil, mich in der Aufgabe schon [mm] k/k^{4} [/mm] angrisst.
[mm] \bruch{(2k+3)*k²}{(k+2)²*(2k+1)} [/mm] ist das was ich fast zum Schluss habe.



Bezug
                                        
Bezug
Konvergent von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 So 25.11.2007
Autor: leduart

Hallo
die harmonische Reihe ist die häufigste Reihe für das Minorantenkriterium. die mit [mm] 1/k^2 [/mm] oder die geom.Reihe die häufigste für das Majorantenkriterium, und das ist hier geeigneter als das Quotientenkriterium.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de