Konvergente Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:12 Do 24.01.2008 | Autor: | johnny11 |
Aufgabe | a) Es sei [mm] a_{n} [/mm] eine konvergente Folge. Zeige:
[mm] \limes_{n\rightarrow\infty}\bruch{1}{n}\summe_{i=1}^{n}a_{i} [/mm] = [mm] \limes_{n\rightarrow\infty}a_{n}
[/mm]
b) Zeige: [mm] \summe_{k=0}^{\infty}\bruch{1}{k!} [/mm] = e |
Bei der Aufgabe a) habe ich an das Sandwich-Prinzip gedacht....
Weiss aber nicht, ob das wirklich was hilft.
Bei Aufgabe b) sollte man den Ausdruck in [mm] (1+1/n)^n [/mm] umformen...? Wäre das was?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:30 Do 24.01.2008 | Autor: | abakus |
> a) Es sei [mm]a_{n}[/mm] eine konvergente Folge. Zeige:
>
> [mm]\limes_{n\rightarrow\infty}\bruch{1}{n}\summe_{i=1}^{n}a_{i}[/mm]
> = [mm]\limes_{n\rightarrow\infty}a_{n}[/mm]
>
>
> b) Zeige: [mm]\summe_{k=0}^{\infty}\bruch{1}{k!}[/mm] = e
> Bei der Aufgabe a) habe ich an das Sandwich-Prinzip
> gedacht....
> Weiss aber nicht, ob das wirklich was hilft.
>
> Bei Aufgabe b) sollte man den Ausdruck in [mm](1+1/n)^n[/mm]
> umformen...? Wäre das was?
Vorschlag: Mache es umgedreht. Nimm den Term [mm] {(1+\bruch{1}{n})}^n [/mm] und multipliziere ihn nach dem binomischen Satz aus. Die dabei entstehenden Brüche enthalten Quotienten wie [mm] \bruch{n}{n}, \bruch{n-1}{n}, \bruch{n-2}{n}, [/mm] die sich zwar nicht alle kürzen, deren Grenzwert aber 1 ist. Lediglich im Nenner bleiben bei der Grenzwertbildung die in der von dir angegebenen Summe enthaltenen Fakultäten übrig.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:38 Do 24.01.2008 | Autor: | johnny11 |
Die dabei entstehenden Brüche
> enthalten Quotienten wie [mm]\bruch{n}{n}, \bruch{n-1}{n}, \bruch{n-2}{n},[/mm]
> die sich zwar nicht alle kürzen, deren Grenzwert aber 1
> ist. Lediglich im Nenner bleiben bei der Grenzwertbildung
> die in der von dir angegebenen Summe enthaltenen Fakultäten
> übrig.
Yep soweit bin ich nun auch gekommen. Aber ich sehe noch nicht, weshalb diese Quotienten den Grenzwert 1 haben...?
Ist dies so weil man die Produkte folgendermassen umformen kann:
[mm] \bruch{n}{n}*(\bruch{n}{n} [/mm] - [mm] \bruch{1}{n}) [/mm] etc....?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:46 Do 24.01.2008 | Autor: | Marcel |
Hallo,
zu Aufgabe a):
Setze [mm] $a:=\lim_{n \to \infty} a_n$
[/mm]
Zu zeigen ist dann, dass [mm] $\frac{1}{n}\sum_{k=1}^n a_k \to [/mm] a$ bei $n [mm] \to \infty$
[/mm]
Dazu sei [mm] $\varepsilon [/mm] > 0$ beliebig, aber fest, und es ist zu zeigen, dass dann ein [mm] $N=N_{\varepsilon} \in \IN$ [/mm] existiert mit [mm] $\vmat{a-\frac{1}{n}\sum_{k=1}^n a_k} \le \varepsilon$ [/mm] für alle $n [mm] \in \IN_{\ge N}$.
[/mm]
Es gilt nun für alle $n [mm] \in \IN$ [/mm] und $M [mm] \in \IN_{< n}$:
[/mm]
[mm] $\vmat{a-\frac{1}{n}\sum_{k=1}^n a_k}=\vmat{\frac{1}{n}*n*a-\frac{1}{n}\sum_{k=1}^n a_k}=\vmat{\left(\frac{1}{n}\sum_{k=1}^n a\right)-\frac{1}{n}\sum_{k=1}^n a_k}$
[/mm]
[mm] $=\frac{1}{n}\vmat{\sum_{k=1}^n (a-a_k)} \le \frac{1}{n} *\sum_{k=1}^M |a-a_k|+\frac{1}{n}*\sum_{k=M+1}^n |a-a_k|$
[/mm]
Wenn Du nun ausnutzt, dass wegen [mm] $a_n \to [/mm] a$ ein [mm] $N^{(1)}=N^{(1)}_{\varepsilon'}$ [/mm] existiert mit [mm] $|a-a_n| [/mm] < [mm] \varepsilon'$ [/mm] mit [mm] $\varepsilon':=\frac{\varepsilon}{2} [/mm] >0$ für alle $n [mm] \in \IN$ [/mm] mit $n [mm] \ge N^{(1)}$, [/mm] so erhälst Du oben mit [mm] $M=N^{(1)}$ [/mm] für alle $n [mm] \in \IN$ [/mm] mit $n > [mm] M=N^{(1)}$:
[/mm]
[mm] $\vmat{a-\frac{1}{n}\sum_{k=1}^n a_k} [/mm] = [mm] \frac{1}{n}\vmat{\sum_{k=1}^n (a-a_k)} \le \frac{1}{n} *\sum_{k=1}^{N^{(1)}} |a-a_k|+\frac{1}{n}*\sum_{k=N^{(1)}+1}^n |a-a_k| \le \frac{1}{n} *\sum_{k=1}^{N^{(1)}} |a-a_k| [/mm] + [mm] \frac{1}{n}*n*\varepsilon'= \frac{1}{n} *\sum_{k=1}^{N^{(1)}} |a-a_k|+\frac{\varepsilon}{2}$
[/mm]
(Es gilt nämlich für alle $n > [mm] N^{(1)}$ [/mm] :
[mm] $\sum_{k=N^{(1)}+1}^n |a-a_k| \le (n-N^{(1)})*\varepsilon' \le n*\varepsilon'$)
[/mm]
Nun begründe noch die Existenz eines [mm] $N=N^{(2)}$ [/mm] mit
[mm] $\frac{1}{n} *\sum_{k=1}^{N^{(1)}} |a-a_k| \le \frac{\varepsilon}{2}$ [/mm] für alle $n [mm] \in \IN$ [/mm] mit $n [mm] \ge N^{(2)}$ [/mm] und setze dann [mm] $N:=N_{\varepsilon}:=\max \{N^{(1)}, N^{(2)}\}$
[/mm]
Gruß,
Marcel
|
|
|
|