www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergente Teilfolgen
Konvergente Teilfolgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergente Teilfolgen: "Tipp"
Status: (Frage) beantwortet Status 
Datum: 13:00 Do 09.06.2016
Autor: Ardbeg

Aufgabe
a) Finden Sie alle konvergenten Teilfolgen der Folge:

1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, [mm] \ldots [/mm]

b) Finden Sie alle konvergenten Teilfolgen der Folge:

1, 2, 2, 1, 2, 2, 3, 3, 3, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, [mm] \ldots [/mm]

c) Für welche reelen Zahlen [mm] \alpha [/mm] gibt es eine Teilfolge der Folge

[mm] \bruch{1}{2} [/mm] , [mm] \bruch{1}{3} [/mm] , [mm] \bruch{2}{3} [/mm] , [mm] \bruch{1}{4} [/mm] , [mm] \bruch{2}{4} [/mm] , [mm] \bruch{3}{4} [/mm] , [mm] \ldots [/mm]

die gegen [mm] \alpha [/mm] konvergiert.

Hallo!

Diese Aufgabe bereitet mir derzeit Kopfzerbrechen. Ich sehe keine Möglichkeit, tatsächlich alle Teilfolgen zu finden, bzw. eine Vorschrift, für die das zutrifft.
Nun aber mal zu dem was man denn wissen kann.

Ich ordne zur a) mal ein paar Werte zu: Sei [mm] (x_{n})_{n\in \IN} [/mm]
[mm] x_{1}=1 [/mm]
[mm] x_{2}=-1 [/mm]
[mm] x_{3}=-1 [/mm]
[mm] x_{4}=1 [/mm]
[mm] x_{5}=1 [/mm]
[mm] x_{6}=1 [/mm]
usw.

Nimmt man mal nur die Werte für den Häufungswert 1 raus erhält man: 1; 4; 5; 6; 11; 12; 13; 14; 15; 16; usw.
Alleine hierfür finde ich keine passende Vorschrift um eine Teilfolge zu definieren. Nimmt man die Anzahl der Werte bis -1 erreicht wird, erhält man das Muster: 1, 3, 5, usw.
Nur wüsste ich nicht wie ich daraus was gewinnen kann.
Mein weiterer Gedanke war, dass ich vielleicht erst einmal eine konvergente Teilfolge finde und dafür wollte ich mir die Vorschrift so definieren, dass sie immer den mittleren Wert der Pakete annimmt, sprich 1; 5; 13; 25; usw.
Das würde dann in etwa so aussehen: 1 [mm] \underbrace{\to}_{+4} [/mm] 5 [mm] \underbrace{\to}_{+4*2} [/mm] 13 [mm] \underbrace{\to}_{+4*3} [/mm] 25 [mm] \underbrace{\to}_{+4*4} [/mm] usw.
Aber auch hier endete der Versuch dann in einer Sackgasse.
Klar ist, dass jede Teilfolge konvergente Teilfolgen hat, dass soll man wohl auch ausnutzen. Die Frage ist nur wie?

Gruß
Ardbeg


        
Bezug
Konvergente Teilfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Do 09.06.2016
Autor: fred97

Tipp:

Sei [mm] s_n:=1+2+....+n. [/mm]

Dann: [mm] s_1=1, s_2=3, s_3=6,.... [/mm]

[mm] s_n=\bruch{n(n+1)}{2} [/mm]

FRED

Bezug
                
Bezug
Konvergente Teilfolgen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:06 Do 09.06.2016
Autor: Ardbeg

Hallo Fred,

tut mir leid, doch leider weiß ich nicht wie ich diesen Tipp verwenden soll.


Ich verstehe was diese Teilfolge erzielt, ich bekomme jedes Mal das letzte Glied eines Pakets. Aber ich wüsste nicht, wie mir diese Sache helfen wird.
Mit [mm] (-1)^n [/mm] könnte ich den Vorzeichenwechsel zeigen, aber selbst wenn ich es in Verbindung mit [mm] s_{n} [/mm] versuche zu bringen, komme ich auf keinen Ansatz.

Ardbeg

Bezug
                        
Bezug
Konvergente Teilfolgen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Sa 11.06.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de